客服电话:400-000-2365

膜萃取技术处理金属废水

中国污水处理工程网 时间:2018-4-13 8:50:51

污水处理技术 | 汇聚全球环保力量,降低企业治污成本

  膜萃取是膜过程与液液萃取相结合形成的一种新型传质分离技术。原料液相和萃取相溶液分别在膜两侧流动,其中一相会润湿膜并渗透进入膜孔,在膜表面上与另一相形成固定界面层。由于在两相中存在溶解度差异,溶质会从一相中扩散到两相界面,先进入膜中的萃取相,再通过膜孔扩散进入萃取相主体。膜萃取技术中研究较多的是中空纤维液膜萃取。与平板式和管式组件相比,中空纤维膜组件装填密度大、比表面积大、占地面积小、成本比较低,非常适合用于处理金属离子的稀溶液。Cr钝化液中存在的主要金属离子有Cr3+、Zn2+、Fe2+、Fe3+、W6+,N.Diban等将中空纤维液膜萃取与电解技术联用,回收了料液中的Zn。由于Cr3+、Zn2+、Fe2+对pH要求范围不同,膜萃取过程中的有机萃取相pH控制在2.5左右,将钝化液中的Zn、Fe分离出来。随着反应的进行,反萃取相的pH达到1.9,在此条件下反萃取相中Fe又被有机相萃取,使反萃取相中的Zn2+纯度增大,在后续电解过程中得到纯度更高的Zn,纯度约98.48%。

  夏洁进行中空纤维膜萃取分离Ce3+/Pr3+的研究,采用未皂化萃取剂P507,通过在水相溶液中加入络合剂醋酸提高两种离子的分离因子,实验结果表明,Ce3+、Pr3+的萃取率可分别达到94.76%、98.17%,分离因子达到3.43。T.Wannachod等通过中空纤维支撑液膜从混合稀土的硝酸溶液中萃取Nd(Ⅲ),并建立传质分离模型。结果表明Nd(Ⅲ)的提取率和分离率分别达到95%、87%,而且实验结果与模型模拟结果基本一致。S.Suren等以D2EHPA为萃取剂,HCl为反萃取剂,通过中空纤维支撑液膜技术从含1mg/LPbCl2和Pb(NO3)2的稀溶液中萃取Pb2+,并设计膜萃取数学模型。结果表明,Pb2+的萃取率达97%,反萃取率30%以上,且实验结果与模型模拟结果平均偏差低于3%。具体联系污水宝或参见http://www.dowater.com更多相关技术文档。

  S.Dixit等从酸性核废料中回收低浓度的U,并使用尺寸为D6.35cm×20.32cm和D10.16cm×33.02cm两种不同规模的膜接触器进行试验,实验过程中建立了合理的数学模型,以便实现装置的大规模工业化应用,研究结果表明U的回收率达98%以上,根据建立的模型预测的结果与不同规模的膜接触器实验结果基本吻合。

  在应用于回收废液中的金属离子的多种膜分离技术中,学者们对中空纤维膜萃取技术研究较多,这项技术对溶液中低浓度的金属离子也有较高的萃取率,可通过萃取剂种类、浓度、料液pH等参数改变实现不同金属离子的分离,在金属离子分离和提取方面有较大的优势。除上面所述,近年来学者们还研究了中空纤维膜萃取技术在Hg2+、Ni2+、Cu2+、Cs+等金属离子回收中的应用,获得了较好的结果。与传统液膜萃取相比,中空纤维膜萃取技术解决了乳化液膜和支撑液膜的稳定性问题,避免相间泄露和乳化型二次污染,节约萃取剂。另外膜萃取技术对膜的浸润性能有较高的要求,膜两侧溶液不能互渗,分离完成需要进行萃取剂和反萃取剂的回收利用。建立合理的传质分离模型有助于中空纤维膜萃取在工业中的推广。