您现在的位置: 中国污水处理工程网 >> 技术转移 >> 正文

节能高盐废水处理系统及其处理方法

发布时间:2018-4-24 18:36:19  中国污水处理工程网

  申请日2014.11.28

  公开(公告)日2015.02.04

  IPC分类号C02F9/10

  摘要

  一种节能高盐废水处理系统及其处理方法,该系统包括正渗透盐浓缩装置和多效蒸发器,正渗透盐浓缩装置包括FO膜密闭交换箱、汲取液回收利用装置和清水回收装置,FO膜密闭交换箱至少设置一级,汲取液回收利用装置与各级FO膜密闭交换箱分别通过电动阀门连接,清水回收装置与汲取液回收利用装置连接,各级FO膜密闭交换箱依次通过排液电动阀门连接,且均通过超越电动阀门与母液多效蒸发器连接。该方法针对高盐废水的高渗透压特性,通过配制依数性更高的汲取液,利用溶液的依数性差异带来的渗透压差,使高盐废水得到高效浓缩的同时回收循环利用水资源,产生电能;运行过程实现自动联锁控制,可根据不同进水条件调整运行方式。

  权利要求书

  1.一种节能高盐废水处理系统,包括正渗透盐浓缩装置和母液多效蒸发器,其特征是:正渗透盐浓缩装置包括FO 膜密闭交换箱、汲取液回收利用装置和清水回收装置,FO 膜密闭交换箱至少设置一级,汲取液回收利用装置与各级FO膜密闭交换箱分别通过电动阀门连接,清水回收装置与汲取液回收利用装置连接,各级FO膜密闭交换箱依次通过排液电动阀门连接,且均通过超越电动阀门与母液多效蒸发器连接。

  2.根据权利要求1所述的节能高盐废水处理系统,其特征是:所述FO 膜密闭交换箱的内部设置膜元件,膜元件将FO 膜密闭交换箱内部分为母液区和汲取液区,母液区的上部设置有高盐废水进水管,该进水管上设置有进水电动阀门;上一级FO 膜密闭交换箱中母液区的底部通过排液电动阀门与下一级FO 膜密闭交换箱中母液区的上部连接,同时每一级FO 膜密闭交换箱中母液区的底部均通过超越电动阀门与母液多效蒸发器连接;每一级FO膜密闭交换箱中汲取液区的上部分别通过汲取液输送管与汲取液回收利用装置中的汲取液交换箱连接,各自的汲取液输送管上均设置有汲取液出口电动阀门;每一级FO膜密闭交换箱中汲取液区的底部均设置有汲取液补偿电动阀门,且与汲取液回收利用装置中的汲取液补偿箱之间通过汲取液补偿管连接,汲取液补偿管上连接有汲取液补偿泵。

  3.根据权利要求2所述的节能高盐废水处理系统,其特征是:所述汲取液区的外部设置有连接汲取液区上部和下部的汲取液循环管,汲取液循环管上设置有汲取液循环泵。

  4.根据权利要求2所述的节能高盐废水处理系统,其特征是:所述母液区和汲取液区内均设置有搅拌器、离子浓度计和温度调节装置。

  5.根据权利要求1所述的节能高盐废水处理系统,其特征是:所述汲取液回收利用装置包括汲取液交换箱、汲取液中间箱、汲取液多效蒸发器、汲取液溶解箱、汲取液补偿箱和溶药箱,汲取液交换箱上部设置有交换箱电动阀门和交换箱电动排气阀,并通过交换箱电动阀门与汲取液中间箱连接;汲取液交换箱的底部通过交换箱超越管电动阀门与汲取液中间箱连接;汲取液中间箱上部设置有中间箱电动排气阀,汲取液中间箱与汲取液多效蒸发器连接;汲取液溶解箱与汲取液多效蒸发器连接;汲取液补偿箱的底部通过补偿箱进口电动阀门与汲取液溶解箱的底部连接;溶药箱的底部通过溶药出口电动阀门与汲取液补偿箱的底部连接。

  6.根据权利要求5所述的节能高盐废水处理系统,其特征是:所述汲取液溶解箱和溶药箱内均设置有搅拌器和离子浓度计。

  7.根据权利要求5所述的节能高盐废水处理系统,其特征是:所述汲取液补偿箱内设置有离子浓度计。

  8.根据权利要求1所述的节能高盐废水处理系统,其特征是:所述清水装置包括清水箱、清水泵和清水管,清水箱与汲取液多效蒸发器连接,清水管与清水箱连接,清水泵连接在清水管上,清水管与溶药箱连接。

  9.根据权利要求1所述的节能高盐废水处理系统,其特征是:还包括渗透能量利用装置,该装置包括密闭的转子箱和涡轮发电机组,转子箱内设置有涡轮机叶轮,涡轮机叶轮与涡轮发电机组连接,转子箱的底部设置有转子箱电动排气阀,转子箱通过转子箱进水电动阀门与汲取液交换箱连接,同时转子箱也与汲取液中间箱连接。

  10.一种权利要求1所述节能高盐废水处理系统的处理方法,其特征是:

  首先分析计算高盐废水的渗透物质的量浓度S1,按照所需渗透压力得出所需第一级FO 膜密闭交换箱汲取液的渗透物质的量浓度J1,J1大于S1,且得出需要的FO 膜密闭交换箱的级数和每级FO 膜密闭交换箱的个数i;然后通过汲取液回收利用装置配制离子浓度J1的汲取液,使汲取液充满第一级FO 膜密闭交换箱;开启高盐废水进水电动阀门,高盐废水流入第一级FO 膜密闭交换箱内,与汲取液交换,使高盐废水中的水分子自由传至汲取液,稀释后体积增大的汲取液通过汲取液回收利用装置中的多效蒸发器实现汲取液溶质和水的分离,实现汲取液溶质的回收和再利用,多余的水进入清水装置,实现水资源的回收利用;高盐废水通过逐级FO 膜密闭交换箱进行浓缩,最后无法再浓缩或根据需要无需进一步浓缩的母液进入母液多效蒸发器进行脱盐处理。

  说明书

  一种节能高盐废水处理系统及其处理方法

  技术领域

  本发明涉及一种用于高盐废水的处理系统及其处理方法,属于废水治理技术领域。

  背景技术

  含盐废水包括含盐生活污水、含盐工业废水和其它的含盐废水。高盐废水是指含有有机物和至少3.5% ( 质量浓度) 的总溶解固体物( TDS) 的废水。高盐废水来源广泛,一是来自化工、制药、石油、印染、造纸、奶制品加工、食品罐装等多种工业生产过程;二是海水等高盐水的直接利用,如海水用于循环冷却、消防等。

  高含盐量有机废水的有机物根据生产过程不同,所含有机物的种类及化学性质差异较大,但所含盐类物质多为Cl-、SO42- 、Na+、Ca2 + 等盐类物质。

  我国高盐废水产生量占废水总量的5%,且每年仍以2% 的速率增长。目前,高盐废水的排放带来十分严重的环境污染,特别是高盐有机废水,不仅含有高浓度的盐,还含有大量的有毒、难降解有机物,对环境危害极大。

  目前,高盐度废水的处理方法主要分为生物法、物理法、化学法及上述方法的联合处理法。如CN103553164A公开的《水平-竖直管降膜多效蒸发高盐废水处理系统》、CN102417277B公开的《一种A/O生物滤池处理高盐废水的方法》、CN103288284B公开的《一种多效蒸发高盐废水处理工艺》、CN102964019B公开的《一种高盐废水的节能蒸发处理工艺》以及CN101928087B公开的《一种高盐废水的处理方法》。

  由于高盐废水中的渗透压较高,极易引起微生物细胞脱水和细胞原生质分离,加上盐析作用和氯离子对细菌的毒害作用,盐浓度高时,废水的密度增加,活性污泥易上浮流失,严重影响生物处理系统的净化效果,尽管随着生化技术的进步与发展,耐盐嗜盐菌的成功分离、培养、驯化使得高盐废水的处理得到进一步的发展,但由于生产实践中存在环境的复杂多变及难以控制等特点,部分菌种要应用于实际生产中,仍有很多问题亟待解决,因此,单纯的生物法已无法满足高盐废水的处理需求。

  另外,目前常用的高盐废水的物理化学处理方法如电解法、焚烧法、蒸发法、膜蒸馏法以及高级氧化法等均存在不同程度的高耗能、高成本和二次污染等缺点。

  为此,有必要重新分析高盐废水的高渗透压的特性,利用渗透作用,开发节能、高效的高盐废水处理技术。

  渗透作用是两种不同浓度的溶液隔以半透膜(允许溶剂分子通过,不允许溶质分子通过的膜),水分子或其它溶剂分子从低浓度的溶液通过半透膜进入高浓度溶液中的现象。其发生的条件有两个:一是有半透膜,二是半透膜两侧有物质的量浓度差。

  渗透作用又可分为正渗透(FO)、反渗透(RO)和压力阻尼渗透(PRO)。

  正渗透(FO)过程是以半透膜两侧的渗透压差为驱动力, 溶液中的水分子从高水化学势区(低离子浓度溶液)通过半透膜向低水化学势区(高离子浓度溶液)传递,而溶质分子或离子被阻挡的一种渗透过程。

  反渗透(RO)过程,是一种以压力差为推动力,从溶液中分离出溶剂的膜分离操作。因为它和正渗透的方向相反,故称反渗透。可以利用不同物料的渗透压差异,使用大于渗透压的反渗透压力,达到分离、提取、纯化和浓缩的目的。

  压力阻尼渗透(PRO)是介于正渗透和反渗透过程的中间过程, 是指在渗透压差的反方向上施加压力,与反渗透过程相似, 然而水分子仍然是扩散到高离子浓度一侧,与正渗透过程相似。

  稀溶液(包含高盐废水)的依数性是指稀溶液中溶剂的蒸气压下降、凝固点降低、沸点升高和渗透压的数值,只与溶液中溶质的量有关,与溶质的本性无关,溶液的依数性为开发特种汲取液提供了理论依据,即只要配置一定依数性的汲取液,使其渗透压高于待处理高盐废水,利用渗透作用特别是正渗透(FO),就可以将高盐废水进一步浓缩。

  为此,亟需开发节能、高效的高盐废水处理系统,利用渗透作用尤其是正渗透(FO)作用和溶液的依数性差异带来的渗透压差,实现高盐废水有效处置、循环利用水资源的同时,充分利用正渗透(FO)产生的压差获得电能,节约能源。

  发明内容

  本发明针对现有高盐废水处理技术存在的不足,依据高盐废水的高渗透压特性,利用溶液的依数性,提供一种处理效果好、节能的高盐废水处理系统。同时提供一种该系统对高盐废水的处理方法。

  本发明的节能高盐废水处理系统,采用以下技术方案:

  该系统,包括正渗透盐浓缩装置和母液(或称浓缩液)多效蒸发器,正渗透盐浓缩装置包括FO 膜密闭交换箱、汲取液回收利用装置和清水回收装置,FO 膜密闭交换箱至少设置一级,汲取液回收利用装置与各级FO膜密闭交换箱分别通过电动阀门连接,清水回收装置与汲取液回收利用装置连接,各级FO膜密闭交换箱依次通过排液电动阀门连接,且均通过超越电动阀门与母液多效蒸发器连接。

  FO 膜密闭交换箱的内部设置膜元件,膜元件将FO 膜密闭交换箱内部分为母液区和汲取液区,母液区的上部设置有高盐废水进水管,该进水管上设置有进水电动阀门;上一级FO 膜密闭交换箱中母液区的底部通过排液电动阀门与下一级FO 膜密闭交换箱中母液区的上部连接,同时每一级FO 膜密闭交换箱中母液区的底部均通过超越电动阀门与母液多效蒸发器连接;每一级FO膜密闭交换箱中汲取液区的上部分别通过汲取液输送管与汲取液回收利用装置中的汲取液交换箱连接,各自的汲取液输送管上均设置有汲取液出口电动阀门;每一级FO膜密闭交换箱中汲取液区的底部均设置有汲取液补偿电动阀门,且与汲取液回收利用装置中的汲取液补偿箱之间通过汲取液补偿管连接,汲取液补偿管上连接有汲取液补偿泵。

  汲取液区的外部设置有连接汲取液区上部和下部的汲取液循环管,汲取液循环管上设置有汲取液循环泵。通过汲取液循环泵将汲取液在汲取液区上部和下部形成循环。

  母液区和汲取液区内均设置有搅拌器、离子浓度计和温度调节装置。

  汲取液回收利用装置包括汲取液交换箱、汲取液中间箱、汲取液多效蒸发器、汲取液溶解箱、汲取液补偿箱和溶药箱,汲取液交换箱上部设置有交换箱电动阀门和交换箱电动排气阀,并通过交换箱电动阀门与汲取液中间箱连接;汲取液交换箱的底部通过交换箱超越管电动阀门与汲取液中间箱连接;汲取液中间箱上部设置有中间箱电动排气阀,汲取液中间箱与汲取液多效蒸发器连接;汲取液溶解箱与汲取液多效蒸发器连接,;汲取液补偿箱的底部通过补偿箱进口电动阀门与汲取液溶解箱的底部连接,;溶药箱的底部通过溶药出口电动阀门与汲取液补偿箱的底部连接。

  汲取液溶解箱和溶药箱内均设置有搅拌器和离子浓度计。

  汲取液补偿箱内设置有离子浓度计。

  清水装置包括清水箱、清水泵和清水管,清水箱与汲取液多效蒸发器连接,清水管与清水箱连接,清水泵连接在清水管上,清水管与溶药箱连接。

  上述系统,还包括渗透能量利用装置,该装置包括密闭的转子箱和涡轮发电机组,转子箱内设置有涡轮机叶轮,涡轮机叶轮与涡轮发电机组连接,转子箱的底部设置有转子箱电动排气阀,转子箱通过转子箱进水电动阀门与汲取液交换箱连接,同时转子箱也与汲取液中间箱连接。

  上述系统的处理方法,是:

  首先分析计算高盐废水的渗透物质的量浓度(溶液中的离子态物质的量与分子态物质的量之和)S1(运行过程中以离子浓度计显示数据近似折算),按照所需渗透压力(△π,由是否用于发电等实际需求决定)得出所需第一级FO 膜密闭交换箱汲取液的离子浓度J1,J1大于S1,且得出需要的FO 膜密闭交换箱的级数n和每级FO 膜密闭交换箱的个数i;然后通过汲取液回收利用装置配制离子浓度J1的汲取液,使汲取液充满第一级FO 膜密闭交换箱;开启高盐废水进水电动阀门,高盐废水流入第一级FO 膜密闭交换箱内,与汲取液交换,使高盐废水中的水分子自由传至汲取液,稀释后体积增大的汲取液通过汲取液回收利用装置中的多效蒸发器实现汲取液溶质(一般为气体)和水(溶剂)的分离,实现汲取液溶质的回收和再利用,多余的水进入清水装置,实现水资源的回收利用;高盐废水通过逐级FO 膜密闭交换箱进行浓缩,最后无法再浓缩或根据需要无需进一步浓缩的的母液进入母液多效蒸发器进行脱盐处理。

  本发明针对高盐废水的高渗透压特性,通过配制依数性更高的汲取液,利用溶液的依数性差异带来的渗透压差,使高盐废水得到高效浓缩的同时,回收循环利用水资源,生产电能;同时,运行过程实现自动联锁控制,可根据不同进水条件调整运行方式,便于实施。具有以下特点:

  1.充分利用溶液的依数性,通过配制依数性较高的汲取液(如NH4HCO3等),利用其与高盐废水的高渗透压差,实现高盐废水高效浓缩的同时,可回收大量水资源;

  2.采用的FO膜具有膜通量大,浓差极化现象少的特性,可保障渗透功能的顺利实现;

  3.采用的多效蒸发器为通用设备,采用强制循环与真空负压(真空度0.08 MPa)蒸发方式,以确保物料在较低温度下(一般为65~80 ℃)沸腾蒸发,该设备具有物料受热时间短、蒸发速度快、浓缩比大的特点,对于黏度较大或容易结晶、结垢的物料,适应性较好,多效同时蒸发,蒸汽得到反复使用,与普通单效蒸发器相比节约能耗约70%以上。

  4.采用的渗透能量利用装置可将系统产生的渗透能转化为电能,从而降低废水处理成本;

  5.通过自动化仪器仪表使运行过程实现自动联锁控制,便于根据不同进水条件调整运行方式;

  6.模块化设计,可根据高盐废水实际浓度和其他实施条件,自由组合,具有较强的灵活性。

相关推荐
项目深度追踪
数据独家提供
服务开通便捷 >