您现在的位置: 中国污水处理工程网 >> 技术转移 >> 正文

低频包络载波高频水处理电路技术

发布时间:2018-7-7 15:52:08  中国污水处理工程网

  申请日2013.11.25

  公开(公告)日2014.03.12

  IPC分类号C02F1/48; H02M7/42; H02M3/24; C02F5/00

  摘要

  本发明涉及节能环保水处理技术领域。本发明的一种低频包络载波的高频水处理电路,包括:电源电路、高低频信号发生电路、亚音频发生电路及电感线圈,所述电源电路将市电经低频整流滤波器整流和滤波得到直流电压,该直流电压为高低频信号发生电路和亚音频发生电路提供工作电源,所述高低频信号发生电路分别生成一路低频半波信号和一路高频半波信号,分别通过亚音频发生电路生成一路低频交变电流和一路高频交变电流,一路低频交变电流输出至电感线圈第一接线端,一路高频交变电流输出至电感线圈第二接线端,通过电感线圈发射到水体中并形成低频包络载波的高频交变电磁场。本发明实现了通过较低的频率输出大功率的复合亚音频交变电磁场,阻垢、除垢效率高。

  权利要求书

  1.一种低频包络载波的高频水处理电路,其特征在于:包括电源电路、高低频信号发生电路、亚音频发生电路及电感线圈,所述电源电路将市电经低频整流滤波器整流和滤波得到直流电源,该直流电源为高低频信号发生电路和亚音频发生电路提供工作电源,所述高低频信号发生电路分别生成一路低频半波信号和一路高频半波信号,该低频半波信号和高频半波信号分别通过亚音频发生电路生成一路低频交变电流和一路高频交变电流,一路低频交变电流输出至电感线圈第一接线端,一路高频交变电流输出至电感线圈第二接线端,通过电感线圈发射到水体中并形成低频包络载波的高频交变电磁场,也即复合亚音频交变电磁场。

  2.根据权利要求1所述的一种低频包络载波的高频水处理电路,其特征在于:所述电源电路包括滤波保护电路、桥式整流电路、分压电路、开关电源发生电路、开关变压器、反馈电路、滤波稳压电路和稳压电源电路,市电经滤波保护电路、桥式整流电路的整流滤波后,输入至分压电路分压输出一路分压电路至开关电源发生电路,该开关电源发生电路控制开关变压器输出的电流大小,开关变压器输出一路直流电源经滤波稳压电路滤波稳压后输出+36V直流电源,该+36V直流电源连接稳压电源电路后输出一路+5V直流电源,开关变压器输出另一路直流电源接至反馈电路,该反馈电路用于检测输出电压,并将该输出电压反馈至开关电源发生电路,进而控制开关变压器输出稳定的+36V直流电源。

  3.根据权利要求2所述的一种低频包络载波的高频水处理电路,其特征在于:所述滤波保护电路由防雷击电阻Rv、滤波电容CX1和扼流线圈L1并联构成,该滤波保护电路输入端并联在市电两端,该滤波保护电路输出端接桥式整流电路的整流桥BR的两输入端,整流桥BR输出端正负极并联稳压电容C1正负极,经稳压电容C1稳压后输出至分压电路,分压电路由电阻R2、电阻R12和电阻R4串联构成,开关电源发生电路由开关电源芯片U1、电容C2、电阻R3、齐纳二极管VR1、阻断二极管D1、电阻R1、电容C4、电容C3和电阻R5构成,分压电阻R4输出的一路分压接至开关电源芯片U1的X脚为该脚提供电流,电容C2与电阻R3串联后与齐纳二极管VR1并联,再与阻断二极管D1串联后并联在开关变压器T1的初级输入,且该阻断二极管D1的阳极还与开关电源芯片U1的D脚连接,当开关信号由1转0的时候形成高压反加在开关电源芯片U1的D脚进行泄压,作用是保护开关电源芯片U1的D脚,开关电源芯片U1的S脚与整流桥BR负极输出端连接,该端还同时与开关电源芯片U1的F脚连接,电阻R1一端与整流桥BR正极输出端连接,电阻R1另一端与开关电源芯片U1的L脚连接,电阻R1用于检测整流后的电源电压,电阻R5一端与开关电源芯片U1的C脚连接,该端还与电容C4一端连接,电阻R5另一端与电容C3的正极连接,该端还与电容C4另一端连接后再连接至整流桥BR负极输出端;

  滤波稳压电路包括电容C11、电阻R11、二极管D3、电容C7、电容C6、电容C8、电容C12、二极管D6和电容C5,开关变压器T1的第一次级线圈一端与二极管D3的阳极连接,该端还与电容C11的一端连接,电容C11的另一端与电阻R11一端连接,电阻R11另一端与二极管D3的阴极连接,该端还与电容C7正极连接,电容C7负极与开关变压器T1的第一次级线圈另一端连接,且该端为接地端,电容C6、电容C8和电容C12的正负极依次分别并联在电容C7的正负极之间,电容C12的正极为+36V直流电源输出端,二极管D6的阳极与开关变压器T1的第二次级线圈一端连接,二极管D6的阴极与电容C5的正极连接,电容C5的负极与开关变压器T1的第二次级线圈另一端连接,二极管D6和电容C5用于稳压滤波,

  所述稳压电源电路由稳压电源芯片Q1、电容C19、电容C13构成,该+36V直流电源与稳压电源芯片Q1的Vin端连接,该端与电容C19的一端连接,电容C19的另一端接地,稳压电源芯片Q1的Vout端则为+5V直流电源输出端,该端同时与电容C13的正极连接,电容C13的负极接地,

  所述反馈电路由反馈芯片U2和电阻R6、电阻R7、电阻R8、电阻R9、电阻R10、电阻R13、二极管D4、电容C9、电容C10和触发二极管U3构成,反馈芯片U2采集+36V直流电源,电阻R9、电阻R13和电阻R10串联构成采样电路对+36V直流电源采样,并为触发二极管U3的触发极提供一个电压,反馈检测芯片U2型号为PC817A,反馈检测芯片U2的3脚与二极管D6的阴极连接,反馈检测芯片U2的4脚与开关电源芯片U1的C脚连接,电阻R7一端接+36V直流电源,该端还与反馈检测芯片U2的1脚连接,电阻R7另一端接二极管D4的阴极,二极管D4的阳极与电阻R6一端连接,该端还与反馈检测芯片U2的2脚连接,电阻R6另一端与触发二极管U3的阴极连接,该端还串联电容C9和电阻R8后接至触发二极管U3的触发极,二极管D4的阴极还与电容C10的正极连接,电容C10的负极接地,电阻R10的一端与触发二极管U3的触发极连接,电阻R10的另一端接地。

  4.根据权利要求2所述的一种低频包络载波的高频水处理电路,其特征在于:所述高低频信号发生电路包括12F系列微处理器U5,该微处理器U5的vdd脚与电源电路+5V直流电源输出端连接,该微处理器U5的GP2脚为使能端EN,该微处理器U5的脚接一电阻R20后与Vdd脚连接,该微处理器U5的GP4和GP5脚悬空,该微处理器U5的GP1脚输出一路低频半波信号OUT1,该微处理器U5的GP0脚输出一路高频半波信号OUT2,该微处理器U5的VSS脚接地。

  5.根据权利要求2所述的一种低频包络载波的高频水处理电路,其特征在于:所述亚音频发生电路包括STI6201系列全桥功放芯片U4、电容C14、电容C15、电容C16、电容C17、电容C18、电阻R14、电阻R15、电阻R16、电阻R17、电阻R18、电阻R19、二极管D5和二极管D2,该全桥功放芯片U4的VREF脚串联电容C18后接地,全桥功放芯片U4的INT2脚串联电阻R15后与微处理器U5的GP1脚连接,全桥功放芯片U4的IN1脚串联电阻R14后与微处理器U5的GP0脚连接,全桥功放芯片U4的SENSE脚接地,全桥功放芯片U4的ENABLE脚串联电阻R18后接至微处理器U5的GP2脚使能端EN,全桥功放芯片U4的NC脚悬空,全桥功放芯片U4的GND脚均接地,全桥功放芯片U4的OUT2脚串联电容C15后接至全桥功放芯片U4的BOOT2脚,全桥功放芯片U4的OUT2脚还与二极管D5的阴极连接,二极管D5的阳极接地,全桥功放芯片U4的OUT2脚还与电阻R16一端连接,电阻R16另一端为高频交变电流输出端OUTPUT2,全桥功放芯片U4的OUT2脚还与电阻R19一端连接,电阻R19另一端串联电容C14后与电阻R17一端连接,该端还与全桥功放芯片U4的OUT1脚连接,电阻R17的另一端为低频交变电流输出端OUTPUT1,全桥功放芯片U4的OUT1脚与二极管D2的阴极连接,二极管D2的阳极接地,全桥功放芯片U4的OUT1脚串联电容C16后与全桥功放芯片U4的BOOT1脚连接,二极管D2的阴极与全桥功放芯片U4的BOOT1脚连接,二极管D2的阳极接地,全桥功放芯片U4的VS脚接至+36V直流电源输出端,该端还串联电容C17后接地,该低频交变电流输出端OUTPUT1接电感线圈的一端,该高频交变电流输出端OUTPUT2接电感线圈的另一端。

  6.根据权利要求1所述的一种低频包络载波的高频水处理电路,其特征在于:所述电源电路包括滤波保护电路、桥式整流电路、分压电路、开关电源发生电路、开关变压器、反馈电路、滤波稳压电路和稳压电源电路,市电经滤波保护电路、桥式整流电路的整流滤波后,输入至分压电路分压输出一路分压电路至开关电源发生电路,该开关电源发生电路控制开关变压器输出的电流大小,开关变压器输出一路直流电源经滤波稳压电路滤波稳压后输出+36V直流电源,该+36V直流电源输入至稳压电源电路后输出一路+5V直流电源和一路+15V直流电源,开关变压器输出另一路直流电源接至反馈电路,该反馈电路用于检测输出电压,并将该输出电压反馈至开关电源发生电路,进而控制开关变压器输出稳定的+36V直流电源。

  7.根据权利要求6所述的一种低频包络载波的高频水处理电路,其特征在于:

  所述滤波保护电路由防雷击电阻Rv1、滤波电容CX1、扼流线圈L1和稳压电容C10构成,该防雷击电阻Rv1并联在市电两端,该滤波电容CX1与防雷击电阻Rv1并联,扼流线圈L1两输入端与滤波电容CX1并联,扼流线圈L1两输出端接桥式整流电路的整流桥BR1的两输入端,整流桥BR1正极输出端接稳压电容C10的正极,整流桥BR1负极输出端接稳压电容C10的负极,分压电路由电阻R3、电阻R5和电阻R13构成,电阻R3、电阻R5和电阻R13依次串联后,该电阻R3的另一自由端接稳压电容C10正极,电阻R13的另一自由端接稳压电容C10负极,开关电源发生电路包括开关电源芯片U3、电容C4、电阻R4、压敏二极管VR1、二极管D3、电阻R6、电容C17、电容C18和电阻R10,分压电阻R13输出的一路分压接至开关电源芯片U3的X脚为该脚提供电流,电容C4与电阻R4串联后与齐纳二极管VR1并联,再与阻断二极管D3串联后并联在开关变压器T1的初级输入,且该阻断二极管D3的阳极还与开关电源芯片U1的D脚连接,当开关信号由1转0的时候形成高压反加在开关电源芯片U1的D脚进行泄压,作用是保护开关电源芯片U1的D脚,开关电源芯片U1的S脚与整流桥BR1负极输出端连接,该端还同时与开关电源芯片U1的F脚连接,电阻R6一端与整流桥BR正极输出端连接,电阻R6另一端与开关电源芯片U1的L脚连接,电阻R6用于检测整流后的电源电压,电阻R10一端与开关电源芯片U1的C脚连接,该端还与电容C17一端连接,电阻R10另一端与电容C18的正极连接,该端还与电容C17另一端连接后再连接至整流桥BR1负极输出端;

  滤波稳压电路包括电容C2、电阻R1、二极管D1、电容C6、电容C7、电容C8、电容C9、二极管D2和电容C11,开关变压器T1的第一次级线圈一端与二极管D1的阳极连接,该端还与电容C2的一端连接,电容C2的另一端与电阻R1一端连接,电阻R1另一端与二极管D1的阴极连接,该端还与电容C6正极连接,电容C6负极与开关变压器T1的第一次级线圈另一端连接,且该端为接地端,电容C7、电容C8和电容C9的正负极依次分别并联在电容C6的正负极之间,电容C9的正极为+36V直流电源输出端,二极管D2的阳极与开关变压器T1的第二次级线圈一端连接,二极管D2的阴极与电容C11的正极连接,电容C11的负极与开关变压器T1的第二次级线圈另一端连接,二极管D2和电容C11用于稳压滤波,

  所述稳压电源电路包括稳压电源芯片Q1、稳压电源芯片Q2、电容C1、电容C3和电容C5,该+36V直流电源分别与稳压电源芯片Q1、稳压电源芯片Q2的Vin端连接,该端还与电容C3的一端连接,电容C3的另一端接地,稳压电源芯片Q1的Vout端则为+5V直流电源输出端,该端同时与电容C5的一端连接,电容C5的另一端与稳压电源芯片Q1的GND端一同接地,稳压电源芯片Q2的Vout端则为+15V直流电源输出端,该端同时与电容C1的一端连接,电容C1的另一端与稳压电源芯片Q2的GND端一同接地,

  所述反馈电路包括反馈芯片U2和电阻R7、电阻R8、电阻R9二极管D6、电阻R11、电阻R12、电阻R14、触发二极管U4、电容C16和电容C19,反馈芯片U2采集+36V直流电源,电阻R7、电阻R8和电阻R14串联构成采样电路对+36V直流电源采样,并为触发二极管U4的触发极提供一个电压,反馈检测芯片U2型号为PC817A,反馈检测芯片U2的3脚与二极管D2的阴极连接,反馈检测芯片U2的4脚与开关电源芯片U1的C脚连接,电阻R9一端接+36V直流电源,该端还与反馈检测芯片U2的1脚连接,电阻R9另一端接二极管D6的阴极,二极管D6的阳极与电阻R11一端连接,该端还与反馈检测芯片U2的2脚连接,电阻R11另一端与触发二极管U4的阴极连接,该端还串联电容C16和电阻R12后接至触发二极管U4的触发极,二极管D6的阴极还与电容C19的正极连接,电容C19的负极接地,电阻R14的一端与触发二极管U4的触发极连接,电阻R14的另一端接地。

  8.根据权利要求6所述的一种低频包络载波的高频水处理电路,其特征在于:所述高低频信号发生电路包括12F系列微处理器U1,该微处理器U1的vdd脚与电源电路+5V直流电源输出端连接,该微处理器U1的GP2脚为使能端EN,该微处理器U5的脚串接电阻R2后与Vdd脚连接,该端与+5V直流电源输出端连接,该微处理器U1的GP4和GP5脚悬空,该微处理器U1的GP1脚输出一路低频半波信号OUT1,该微处理器U1的GP0脚输出一路高频半波信号OUT2,该微处理器U1的VSS脚接地。

  9.根据权利要求6所述的一种低频包络载波的高频水处理电路,其特征在于:所述亚音频发生电路包括IR2系列的第一半桥驱动芯片U5和第二半桥驱动芯片U6、第三功率管Q3、第四功率管Q4、第五功率管Q5、第六功率管Q6、电容C12、电容C13、电容C14和电容C15,第一半桥驱动芯片U5的VCC端口与电源电路的+15V直流电源端连接,第一半桥驱动芯片U5的 端口与微处理器U1的GP2端口连接,第一半桥驱动芯片U5的IN端口与微处理器U1的GP1端口连接,第一半桥驱动芯片U5的HO端口与第四功率管Q4的G极连接,第一半桥驱动芯片U5的LO端口与第六功率管Q6的G极连接,第一半桥驱动芯片U5的VS端口串联电容C12后连接至第一半桥驱动芯片U5的VB端口,该端口还与二极管D4的阴极连接,二极管D4的阳极与第一半桥驱动芯片U5的VCC端口连接,第一半桥驱动芯片U5的COM端口串联电容C14后连接至+15V直流电源,第一半桥驱动芯片U5的COM端口还与第六功率管Q6的S极连接后接地,第二半桥驱动芯片U6的VCC端口与电源电路的+15V直流电源连连接,第二半桥驱动芯片U6的端口与微处理器U1的GP2端口连接,第二半桥驱动芯片U6的IN端口与微处理器U1的GP0端口连接,第二半桥驱动芯片U6的HO端口与第三功率管Q3的G极连接,第二半桥驱动芯片U6的LO端口与第五功率管Q5的G极连接,第二半桥驱动芯片U1的VS端口串联电容C13后连接至第二半桥驱动芯片U6的VB端口,该端还与二极管D5的阴极连接,二极管D5的阳极与第二半桥驱动芯片U6的VCC端口连接,第二半桥驱动芯片U6的COM端口串联电容C15后连接至+15V直流电源,第二半桥驱动芯片U6的COM端口还与第五功率管Q5的S极连接后接地,第三功率管Q3和第四功率管Q4的D极均接至+36V直流电源,第三功率管Q3的S极与第六功率管Q6的D极连接,第四功率管Q4的S极与第五功率管Q5的D极连接,第三功率管Q3的S极为低频交变电流输出端OUTPUT1,第四功率管Q4的S极接为为高频交变电流输出端OUTPUT2,该低频交变电流输出端OUTPUT1接电感线圈的一端,该高频交变电流输出端OUTPUT2接电感线圈的另一端。

  10.一种低频包络载波的高频水处理方法,适用于权利要求1至9任一项的电路,包括以下步骤:

  步骤1、电源电路将市电经低频整流滤波器整流和滤波得到直流电源,该直流电源为高低频信号发生电路和亚音频发生电路提供工作电源,

  步骤2、高低频信号发生电路分别生成一路低频半波信号和一路高频半波信号,

  步骤3、一路低频半波信号和一路高频半波信号分别通过亚音频发生电路生成一路低频交变电流和一路高频交变电流,

  步骤4、该路低频交变电流连接至电感线圈第一接线端,该路高频交变电流连接至电感线圈第二接线端,通过电感线圈发射到水体中并形成低频包络载波的高频交变电磁场,也即复合亚音频交变电磁场。

  说明书

  一种低频包络载波的高频水处理电路及方法

  技术领域

  本发明涉及节能环保水处理技术领域,特别是涉及一种低频包络载波的高频水处理电路及方法。

  背景技术

  日常用水中含有大量的碳酸根离子(CO32-)及钙(Ca2+)、镁(Mg2+)离子,当水温升高时,钙、镁离子与碳酸根离子结合,生成难溶于水的碳酸钙(CaCO3)等,并以固体形式析出,此即水垢,附着在系统换热器表面,结构致密结晶, 这层物质的存在严重降低了换热面的导热系数,造成设备换热效率急剧下降,无法达到使用要求,造成工业换热系统瘫痪,严重影响整个系统的连续、安全、稳定运行。现有的水处理方法主要有化学处理方法和物理处理方法,一般的化学处理方法,即在水中添加足够功能的化学药剂,防止结垢添加阻垢剂等,其主要缺点是化学药剂里的磷酸盐和亚硝酸盐是藻类和细菌的丰富营养来源,容易产生水体污染。

  一般的物理方法常见的是采用电场或磁场的水处理技术,利用外加的交变高频电磁场,改变晶体的结构形态,达到防垢和除垢目的,同时,采用交变高频电磁场,还可以击破微生物细胞壁和细胞膜,使其不能在水中继续生存、繁殖,达到杀菌、灭菌的目的。但这种技术的水处理电器设备需要高频电源供电,该高频电源电路一般由直流电源、高频逆变电路及电感线圈组成,所述直流电源将市电经低频整流滤波器整流和滤波得到低压直流电,再经过高频逆变电路高频逆变得到高频交流电,然后将所得高频交流电经电感线圈能量增进发射到水体中并形成高频交变电磁场,水在高频交变电磁场的作用下发生物理性能和结构的变化。例如假设正常处理Qm3的水量所需的单个电感线圈所需的电流为IA,所需的高频电源电路的固定电压为UV,在保持高频电源电路的固定电压为U不变的情况下,需要处理10Qm3的水量时,则需要10IA的电流才能处理,按现有技术通常需要采用10个电感线圈来获得同样的水处理效果,这需要10组高频电源电路分别驱动10个电感线圈,这会造成成本上升,产品的体积也较大,不易安装和维护,当然,也可也采用1组高频电源电路驱动10个电感线圈,但这种方式,根据高频电磁场阻性电路的电压公式U=(R+jωX)*I ,计算得到阻抗Z=R+jωX=U/I,jωX为感抗,由于ω=2πf,由于高频电源电路的固定电压为U不变,10个电感线圈采用串联,水处理频率f不变,则阻抗变成了Z’=10Z,则根据I=U/Z’,计算得到实际的电流为0.1IA,即使增大高频电源电路的电压U,也达不到所需的IA电流,因此达不到需要的水处理效果。因此现有技术受ω=2πf的影响,在10个电感线圈串联进一个高频电源电路中时,难以实现在高频f的情况下获得大电流I,这种高频交变电磁场无法实现对大水量进行同等效果的水处理目的。

  发明内容

  解决上述技术问题,本发明提供了一种低频包络载波的高频水处理电路,能够实现采用一组高频电源电路对多个电感线圈进行大电流驱动,实现在高频f的情况下获得大电流,并对大水量进行同等效果的水处理目的,且本电路结构简单,成本低廉,除垢效率高。

  本发明还提供了一种低频包络载波的高频水处理方法,能够实现多个电感线圈串联进一个高频电源电路,在高频f的情况下仍然能够保持较低感抗jωX,进而保证大电流的顺利通过。

  为了达到上述目的,本发明所采用的技术方案是,一种低频包络载波的高频水处理电路,包括:电源电路、高低频信号发生电路、亚音频发生电路及电感线圈,所述电源电路将市电经低频整流滤波器整流和滤波得到直流电源,该直流电源为高低频信号发生电路和亚音频发生电路提供工作电源,所述高低频信号发生电路分别生成一路低频半波信号和一路高频半波信号,该低频半波信号和高频半波信号分别通过亚音频发生电路生成一路低频交变电流和一路高频交变电流,一路低频交变电流输出至电感线圈第一接线端,一路高频交变电流输出至电感线圈第二接线端,通过电感线圈发射到水体中并形成低频包络载波的高频交变电磁场,也即复合亚音频交变电磁场。

  进一步的,所述电感线圈为一个或多个电感线圈,该多个电感线圈采用串联方式连接后一端连接至低频交变电流,另一端连接至高频交变电流。

  进一步的,所述电源电路包括滤波保护电路、桥式整流电路、分压电路、开关电源发生电路、开关变压器、反馈电路、滤波稳压电路和稳压电源电路,市电经滤波保护电路、桥式整流电路的整流滤波后,输入至分压电路分压输出一路分压电路至开关电源发生电路,该开关电源发生电路控制开关变压器输出的电流大小,开关变压器输出一路直流电源经滤波稳压电路滤波稳压后输出+36V直流电源,该+36V直流电源连接稳压电源电路后输出一路+5V直流电源,开关变压器输出另一路直流电源接至反馈电路,该反馈电路用于检测输出电压,并将该输出电压反馈至开关电源发生电路,进而控制开关变压器输出稳定的+36V直流电源。

  更进一步的,所述滤波保护电路由防雷击电阻Rv、滤波电容CX1和扼流线圈L1并联构成,该滤波保护电路输入端并联在市电两端,该滤波保护电路输出端接桥式整流电路的整流桥BR的两输入端,整流桥BR输出端正负极并联稳压电容C1正负极,经稳压电容C1稳压后输出至分压电路,分压电路由电阻R2、电阻R12和电阻R4串联构成,开关电源发生电路由开关电源芯片U1、电容C2、电阻R3、齐纳二极管VR1、阻断二极管D1、电阻R1、电容C4、电容C3和电阻R5构成,分压电阻R4输出的一路分压接至开关电源芯片U1的X脚为该脚提供电流,电容C2与电阻R3串联后与齐纳二极管VR1并联,再与阻断二极管D1串联后并联在开关变压器T1的初级输入,且该阻断二极管D1的阳极还与开关电源芯片U1的D脚连接,当开关信号由1转0的时候形成高压反加在开关电源芯片U1的D脚进行泄压,作用是保护开关电源芯片U1的D脚,开关电源芯片U1的S脚与整流桥BR负极输出端连接,该端还同时与开关电源芯片U1的F脚连接,电阻R1一端与整流桥BR正极输出端连接,电阻R1另一端与开关电源芯片U1的L脚连接,电阻R1用于检测整流后的电源电压,电阻R5一端与开关电源芯片U1的C脚连接,该端还与电容C4一端连接,电阻R5另一端与电容C3的正极连接,该端还与电容C4另一端连接后再连接至整流桥BR负极输出端;

  滤波稳压电路包括电容C11、电阻R11、二极管D3、电容C7、电容C6、电容C8、电容C12、二极管D6和电容C5,开关变压器T1的第一次级线圈一端与二极管D3的阳极连接,该端还与电容C11的一端连接,电容C11的另一端与电阻R11一端连接,电阻R11另一端与二极管D3的阴极连接,该端还与电容C7正极连接,电容C7负极与开关变压器T1的第一次级线圈另一端连接,且该端为接地端,电容C6、电容C8和电容C12的正负极依次分别并联在电容C7的正负极之间,电容C12的正极为+36V直流电源输出端,二极管D6的阳极与开关变压器T1的第二次级线圈一端连接,二极管D6的阴极与电容C5的正极连接,电容C5的负极与开关变压器T1的第二次级线圈另一端连接,二极管D6和电容C5用于稳压滤波,

  所述稳压电源电路由稳压电源芯片Q1、电容C19、电容C13构成,该+36V直流电源与稳压电源芯片Q1的Vin端连接,该端与电容C19的一端连接,电容C19的另一端接地,稳压电源芯片Q1的Vout端则为+5V直流电源输出端,该端同时与电容C13的正极连接,电容C13的负极接地,

  所述反馈电路由反馈芯片U2和电阻R6、电阻R7、电阻R8、电阻R9、电阻R10、电阻R13、二极管D4、电容C9、电容C10和触发二极管U3构成,反馈芯片U2采集+36V直流电源,电阻R9、电阻R13和电阻R10串联构成采样电路对+36V直流电源采样,并为触发二极管U3的触发极提供一个电压,反馈检测芯片U2型号为PC817A,反馈检测芯片U2的3脚与二极管D6的阴极连接,反馈检测芯片U2的4脚与开关电源芯片U1的C脚连接,电阻R7一端接+36V直流电源,该端还与反馈检测芯片U2的1脚连接,电阻R7另一端接二极管D4的阴极,二极管D4的阳极与电阻R6一端连接,该端还与反馈检测芯片U2的2脚连接,电阻R6另一端与触发二极管U3的阴极连接,该端还串联电容C9和电阻R8后接至触发二极管U3的触发极,二极管D4的阴极还与电容C10的正极连接,电容C10的负极接地,电阻R10的一端与触发二极管U3的触发极连接,电阻R10的另一端接地。

  更进一步的,所述高低频信号发生电路包括12F系列微处理器U5,该微处理器U5的vdd脚与电源电路+5V直流电源输出端连接,该微处理器U5的GP2脚为使能端EN,该微处理器U5的脚接一电阻R20后与Vdd脚连接,该微处理器U5的GP4和GP5脚悬空,该微处理器U5的GP1脚输出一路低频半波信号OUT1,该微处理器U5的GP0脚输出一路高频半波信号OUT2,该微处理器U5的VSS脚接地。

  进一步的,所述亚音频发生电路包括STI6201系列全桥功放芯片U4、电容C14、电容C15、电容C16、电容C17、电容C18、电阻R14、电阻R15、电阻R16、电阻R17、电阻R18、电阻R19、二极管D5和二极管D2,该全桥功放芯片U4的VREF脚串联电容C18后接地,全桥功放芯片U4的INT2脚串联电阻R15后与微处理器U5的GP1脚连接,全桥功放芯片U4的IN1脚串联电阻R14后与微处理器U5的GP0脚连接,全桥功放芯片U4的SENSE脚接地,全桥功放芯片U4的ENABLE脚串联电阻R18后接至微处理器U5的GP2脚使能端EN,全桥功放芯片U4的NC脚悬空,全桥功放芯片U4的GND脚均接地,全桥功放芯片U4的OUT2脚串联电容C15后接至全桥功放芯片U4的BOOT2脚,全桥功放芯片U4的OUT2脚还与二极管D5的阴极连接,二极管D5的阳极接地,全桥功放芯片U4的OUT2脚还与电阻R16一端连接,电阻R16另一端为高频交变电流输出端OUTPUT2,全桥功放芯片U4的OUT2脚还与电阻R19一端连接,电阻R19另一端串联电容C14后与电阻R17一端连接,该端还与全桥功放芯片U4的OUT1脚连接,电阻R17的另一端为低频交变电流输出端OUTPUT1,全桥功放芯片U4的OUT1脚与二极管D2的阴极连接,二极管D2的阳极接地,全桥功放芯片U4的OUT1脚串联电容C16后与全桥功放芯片U4的BOOT1脚连接,二极管D2的阴极与全桥功放芯片U4的BOOT1脚连接,二极管D2的阳极接地,全桥功放芯片U4的VS脚接至+36V直流电源输出端,该端还串联电容C17后接地,该低频交变电流输出端OUTPUT1接电感线圈的一端,该高频交变电流输出端OUTPUT2接电感线圈的另一端。

  更进一步的,所述电源电路包括滤波保护电路、桥式整流电路、分压电路、开关电源发生电路、开关变压器、反馈电路、滤波稳压电路和稳压电源电路,市电经滤波保护电路、桥式整流电路的整流滤波后,输入至分压电路分压输出一路分压电路至开关电源发生电路,该开关电源发生电路控制开关变压器输出的电流大小,开关变压器输出一路直流电源经滤波稳压电路滤波稳压后输出+36V直流电源,该+36V直流电源输入至稳压电源电路后输出一路+5V直流电源和一路+15V直流电源,开关变压器输出另一路直流电源接至反馈电路,该反馈电路用于检测输出电压,并将该输出电压反馈至开关电源发生电路,进而控制开关变压器输出稳定的+36V直流电源。

  更进一步的,所述滤波保护电路由防雷击电阻Rv1、滤波电容CX1、扼流线圈L1和稳压电容C10构成,该防雷击电阻Rv1并联在市电两端,该滤波电容CX1与防雷击电阻Rv1并联,扼流线圈L1两输入端与滤波电容CX1并联,扼流线圈L1两输出端接桥式整流电路的整流桥BR1的两输入端,整流桥BR1正极输出端接稳压电容C10的正极,整流桥BR1负极输出端接稳压电容C10的负极,分压电路由电阻R3、电阻R5和电阻R13构成,电阻R3、电阻R5和电阻R13依次串联后,该电阻R3的另一自由端接稳压电容C10正极,电阻R13的另一自由端接稳压电容C10负极,开关电源发生电路包括开关电源芯片U3、电容C4、电阻R4、压敏二极管VR1、二极管D3、电阻R6、电容C17、电容C18和电阻R10,分压电阻R13输出的一路分压接至开关电源芯片U3的X脚为该脚提供电流,电容C4与电阻R4串联后与齐纳二极管VR1并联,再与阻断二极管D3串联后并联在开关变压器T1的初级输入,且该阻断二极管D3的阳极还与开关电源芯片U1的D脚连接,当开关信号由1转0的时候形成高压反加在开关电源芯片U1的D脚进行泄压,作用是保护开关电源芯片U1的D脚,开关电源芯片U1的S脚与整流桥BR1负极输出端连接,该端还同时与开关电源芯片U1的F脚连接,电阻R6一端与整流桥BR正极输出端连接,电阻R6另一端与开关电源芯片U1的L脚连接,电阻R6用于检测整流后的电源电压,电阻R10一端与开关电源芯片U1的C脚连接,该端还与电容C17一端连接,电阻R10另一端与电容C18的正极连接,该端还与电容C17另一端连接后再连接至整流桥BR1负极输出端;

  滤波稳压电路包括电容C2、电阻R1、二极管D1、电容C6、电容C7、电容C8、电容C9、二极管D2和电容C11,开关变压器T1的第一次级线圈一端与二极管D1的阳极连接,该端还与电容C2的一端连接,电容C2的另一端与电阻R1一端连接,电阻R1另一端与二极管D1的阴极连接,该端还与电容C6正极连接,电容C6负极与开关变压器T1的第一次级线圈另一端连接,且该端为接地端,电容C7、电容C8和电容C9的正负极依次分别并联在电容C6的正负极之间,电容C9的正极为+36V直流电源输出端,二极管D2的阳极与开关变压器T1的第二次级线圈一端连接,二极管D2的阴极与电容C11的正极连接,电容C11的负极与开关变压器T1的第二次级线圈另一端连接,二极管D2和电容C11用于稳压滤波,

  所述稳压电源电路包括稳压电源芯片Q1、稳压电源芯片Q2、电容C1、电容C3和电容C5,该+36V直流电源分别与稳压电源芯片Q1、稳压电源芯片Q2的Vin端连接,该端还与电容C3的一端连接,电容C3的另一端接地,稳压电源芯片Q1的Vout端则为+5V直流电源输出端,该端同时与电容C5的一端连接,电容C5的另一端与稳压电源芯片Q1的GND端一同接地,稳压电源芯片Q2的Vout端则为+15V直流电源输出端,该端同时与电容C1的一端连接,电容C1的另一端与稳压电源芯片Q2的GND端一同接地,

  所述反馈电路包括反馈芯片U2和电阻R7、电阻R8、电阻R9二极管D6、电阻R11、电阻R12、电阻R14、触发二极管U4、电容C16和电容C19,反馈芯片U2采集+36V直流电源,电阻R7、电阻R8和电阻R14串联构成采样电路对+36V直流电源采样,并为触发二极管U4的触发极提供一个电压,反馈检测芯片U2型号为PC817A,反馈检测芯片U2的3脚与二极管D2的阴极连接,反馈检测芯片U2的4脚与开关电源芯片U1的C脚连接,电阻R9一端接+36V直流电源,该端还与反馈检测芯片U2的1脚连接,电阻R9另一端接二极管D6的阴极,二极管D6的阳极与电阻R11一端连接,该端还与反馈检测芯片U2的2脚连接,电阻R11另一端与触发二极管U4的阴极连接,该端还串联电容C16和电阻R12后接至触发二极管U4的触发极,二极管D6的阴极还与电容C19的正极连接,电容C19的负极接地,电阻R14的一端与触发二极管U4的触发极连接,电阻R14的另一端接地;

  更进一步的,所述高低频信号发生电路包括12F系列微处理器U1,该微处理器U1的vdd脚与电源电路+5V直流电源输出端连接,该微处理器U1的GP2脚为使能端EN,该微处理器U5的脚串接电阻R2后与Vdd脚连接,该端与+5V直流电源输出端连接,该微处理器U1的GP4和GP5脚悬空,该微处理器U1的GP1脚输出一路低频半波信号OUT1,该微处理器U1的GP0脚输出一路高频半波信号OUT2,该微处理器U1的VSS脚接地。

  更进一步的,所述亚音频发生电路包括IR2系列的第一半桥驱动芯片U5和第二半桥驱动芯片U6、第三功率管Q3、第四功率管Q4、第五功率管Q5、第六功率管Q6、电容C12、电容C13、电容C14和电容C15,第一半桥驱动芯片U5的VCC端口与电源电路的+15V直流电源端连接,第一半桥驱动芯片U5的 端口与微处理器U1的GP2端口连接,第一半桥驱动芯片U5的IN端口与微处理器U1的GP1端口连接,第一半桥驱动芯片U5的HO端口与第四功率管Q4的G极连接,第一半桥驱动芯片U5的LO端口与第六功率管Q6的G极连接,第一半桥驱动芯片U5的VS端口串联电容C12后连接至第一半桥驱动芯片U5的VB端口,该端口还与二极管D4的阴极连接,二极管D4的阳极与第一半桥驱动芯片U5的VCC端口连接,第一半桥驱动芯片U5的COM端口串联电容C14后连接至+15V直流电源,第一半桥驱动芯片U5的COM端口还与第六功率管Q6的S极连接后接地,第二半桥驱动芯片U6的VCC端口与电源电路的+15V直流电源连连接,第二半桥驱动芯片U6的端口与微处理器U1的GP2端口连接,第二半桥驱动芯片U6的IN端口与微处理器U1的GP0端口连接,第二半桥驱动芯片U6的HO端口与第三功率管Q3的G极连接,第二半桥驱动芯片U6的LO端口与第五功率管Q5的G极连接,第二半桥驱动芯片U1的VS端口串联电容C13后连接至第二半桥驱动芯片U6的VB端口,该端还与二极管D5的阴极连接,二极管D5的阳极与第二半桥驱动芯片U6的VCC端口连接,第二半桥驱动芯片U6的COM端口串联电容C15后连接至+15V直流电源,第二半桥驱动芯片U6的COM端口还与第五功率管Q5的S极连接后接地,第四功率管Q4的S极为低频交变电流输出端OUTPUT1,第3功率管Q3的S极接为为高频交变电流输出端OUTPUT2,该低频交变电流输出端OUTPUT1接电感线圈的一端,该高频交变电流输出端OUTPUT2接电感线圈的另一端。

  一种低频包络载波的高频水处理方法,适用于上述电路,包括以下步骤:

  步骤1、电源电路将市电经低频整流滤波器整流和滤波得到直流电源,该直流电源为高低频信号发生电路和亚音频发生电路提供工作电源,

  步骤2、高低频信号发生电路分别生成一路低频半波信号和一路高频半波信号,

  步骤3、一路低频半波信号和一路高频半波信号分别通过亚音频发生电路生成一路低频交变电流和一路高频交变电流,

  步骤4、该路低频交变电流连接至电感线圈第一接线端,该路高频交变电流连接至电感线圈第二接线端,通过电感线圈发射到水体中并形成低频包络载波的高频交变电磁场,也即复合亚音频交变电磁场。

  本发明通过采用上述技术方案,与现有技术相比,具有如下优点:

  本发明一种低频包络载波的高频水处理电路,分别产生一路低频信号和一路高频信号,再将该低频信号和高频信号分别输出至电感线圈的两端,从而将直流电源转变为一路低频包络载波的高频交变电流,此交变电流即为复合亚音频电流,通过电感线圈发射到水体中并形成复合亚音频交变电磁场,能够实现采用一组高频电源电路对多个串联的电感线圈驱动,并使得每一电感线圈在高频f的情况下获得大电流,进而对大水量进行同等效果的水处理目的,且结构简单,成本低廉,除垢效率高。

  本发明同时提供一种低频包络载波的高频水处理方法,通过将低频信号和高频信号分别输出至电感线圈的两端,在电感线圈侧输出一路低频包络载波的高频交变电流,此交变电流即为复合亚音频电流,电感线圈将该复合亚音频电流发射到水体中并形成复合亚音频交变电磁场,能够驱动电感线圈在高频f的情况下能够保持较低感抗jωX,进而保证大电流的顺利通过。

相关推荐
项目深度追踪
数据独家提供
服务开通便捷 >