申请日2010.03.26
公开(公告)日2010.08.18
IPC分类号C02F9/00; G05B19/418; G05B19/048
摘要
本发明公开了一种污水处理工艺监督控制方法,一方面它可以根据自动监测手段获取充分的数据,并将数据传送到数据处理服务器(32)中,然后管理信息系统(36)根据数据完整性确认是否需要人工干预补充数据或者切换到手动工作模式。如完整,则将数据传送到工艺数学模拟软件(38),模拟后的工艺参数可以直接通过接口管理软件(38)、工艺组态软件(39)传递给工艺执行程序(41)运行。远程指挥员可用远程指挥计算机(31)给现场操作员发指令,完成人工检测和元件执行操作工作,相关操作记录会记录在管理信息系统(36)中。
权利要求书
1.一种污水处理工艺监督控制方法,该方法包括了硬件部分和软件部分;
其硬件部分包括了污水处理工艺、工艺执行元件、数据采集元件、控制模块、工业计算机(29)、计算机终端和数据处理服务器(32),污水处理工艺包括进水口总进水口(1)、总出水口(14)、第一处理池(5)和第二处理池(13)、正流向管(7)和内回流管(15);工艺执行元件包括第一变频流量泵(2)、第二变频流量泵(8)、回流变频泵(9)、第一搅拌器(3)、第二搅拌器(10);数据采集元件包括第一流量计(56),第二流量计(57),第三流量计(58)、第一曝气口(6)和第二曝气口(12);控制模块包括控制器及数据采集模块(26)、数据总线(24)和控制器数据线(28),计算机终端包括现场操作终端(27),远程指挥计算机(31),33-客户查询终端(33);
污水处理工艺的组成要素处理池、搅拌器、曝气口数量以及相应的执行元件、数据采集元件数量可以根据工艺的需要增加或者减少;
第一自动数据采集接口(16)为第一流量计(56)和第一水质检测仪(4)上所有自动数据采集接口的总称,第一控制信号接口(17)为第一变频流量泵(2),第一搅拌器(3)和第一曝气口(6)上控制点的总称;第二自动数据采集接口(20)为第二流量计(57)、第三流量计(58)和第二水质检测仪(11)上所有自动数据采集接口的总称,第二控制信号接口(21)为第二变频流量泵(8)、回流变频泵(9),第二搅拌器(10)和第二曝气口(12)上控制点的总称;
工艺执行由控制器及数据采集模块(26)通过第一控制信号接口(17)和第二控制信号接口(21)执行,数据采集可以由控制器及数据采集模块(26)通过第一自动数据采集接口(16)和第二自动数据采集接口(20)实现,控制器及数据采集模块(26)通过数据总线(24)与各接口相连;
工业计算机(29)可以通过数据总线(24)将控制程序写入控制器及数据采集模块(26)或者与其进行数据信息交换;现场操作终端(27)、工业计算机(29)、远程指挥计算机(31),数据处理服务器(32),客户查询终端(33)通过计算机网络(30)互联;
工艺组态软件(40)安装在工业计算机(29)上,工艺执行程序(41)存放于控制器及数据采集模块(26)的存储器中,远程指挥人机界面(33)安装在远程指挥计算机(31)上;
其特征在于:
第一人工检测点(18)为第一处理池(5)所有人工观察的点的总称,第一人工操作点(19)为第一处理池(5)所有人工可以操作点的总称,第二人工检测点(22)为第二处理池(13)和内回流管(15)上所有人工观察的点的总称,第二人工操作点(23)为第二处理池(13)和内回流管(15)上所有人工可以操作点的总称;
数据采集可由现场操作员在接收到现场操作终端(27)的指令后通过第一人工检测点(18)和第二人工检测点(22)使用人工检测手段检测执行,检测后的数据通过现场操作终端(27)输入;工艺执行可由现场操作员接收到现场操作终端(27)发出的指令后通过第一人工操作点(19)和第二人工操作点(23)操作执行,现场操作员的操作指令由远程指挥计算机(31)通过计算机网络(30)传给现场操作终端(27);现场操作员在执行非操作终端(27)下达的检测或者操作指令后需将执行行为和检测结果输入现场操作终端(27);
第一自动数据采集接口(16),第一控制信号接口(17),第一人工检测点(18),第一人工操作点(19),第二自动数据采集接口(20),第二控制信号接口(21),第二人工检测点(22),第二人工操作点(22)最终都通过计算机网络(30)传输到数据处理服务器(32)上;
软件部分还包括客户查询人机界面(34)、决策分析软件(35)、管理信息系统(36)、操作终端人机界面(37)、工艺数学模拟软件(38)、接口管理软件(39);客户查询人机界面(34)安装在客户查询终端(33)上,决策分析软件(35)、管理信息系统(36)、工艺数学模拟软件(38)和接口管理软件(39)安装在数据处理服务器(32)中,操作终端人机界面(37)安装在现场操作终端(27)上;
第一自动数据采集接口(16)和第二自动数据采集接口(20)通过工艺执行程序(41)将数据传送给工艺组态软件(40),工艺组态软件(40)可以通过工艺执行程序(41)将控制信号传送给第一控制信号接口(17)和第二控制信号接口(21);工艺组态软件(40)同时将数据传送给操作终端人机界面(37),接口管理软件(39)可以实现和工艺组态软件(40)、工艺数学模拟软件(38)、决策分析软件(35)、管理信息系统(36)的双向数据传输;现场操作员可以通过操作终端人机界面(37)访问管理信息系统(36),并可以访问录入有关数据信息,远程指挥员可以通过远程指挥人机界面(33)访问管理信息系统(36),并可以录入和更改有关数据信息,普通客户可以通过客户查询人机界面(34)访问管理信息系统(36),查询有关信息。
2.根据权利要求1所述的一种污水处理工艺监督控制方法,其特征是根据工艺的需要可以对现场更多的污水处理池、执行元件和检测元件进行数据采集、发送自动操作指令。
3.根据权利要求1所述的一种污水处理工艺监督控制方法,其特征是现场操作终端(27)可以是一个或者多个,且可以由不同的现场操作员执行完成。
说明书
一种污水处理工艺监督控制方法
所属技术领域
本发明涉及污水处理工艺的自动化控制领域,更具体地说,它涉及利用自动控制设备和计算机辅助管理手段相结合的污水处理工艺监督控制方法。
背景技术
污水处理工艺方法众多,通常需要若干个相互耦合的处理环节按照恰当的参数运行才能达到理想的处理效果。在具体的工艺执行过程中,处理效果会受到污水水质状况和流量的影响,因而需要准确获取这些指标,在理想情况下对于各项污水水质指标的测定虽然可以依靠于各种监测仪器和手段实现,但是由于检测仪器测定原理和采集周期各不相同,且对于同一个处理池不同的位置而言其水质参与仍然相差较大,很难全面地实时多得到的水质信息,这就使准确地指导污水处理工艺的执行变得困难。自动化的监测和控制设备已经在不少污水处理厂实际运行中使用,如可以PLC组成的监控系统对污水处理工艺进行全方位的监控,并且可以通过现场控制总线将分布在多个点的数据实时采集并且通过远程计算机实时发出控制指令,但是这两个环节往往是分离的,污水处理工艺的执行实际在很大程度上还是依赖于操作员工的经验,实际采集的数据并不能够及时精确地反映到工艺调整中去,这样可以避免系统出现较大偏差,但是存在的问题是精度不高,且过多地依赖于现场操作员的经验。
受此启发,在此基础上提出了将人类工程师和专家的经验进行系统整理,通过专家系统方法,如模糊系统、人工神经网络等指导工艺的调整与执行,这样可以在一定程度上避免现场操作员的经验不足的问题,但是对于不同的工艺和实际的现场条件则需要设计专门的工艺方案,这本身就限制了这种方面的大规模推广。同时,比较精确的数据模拟技术也得到了长足发展(郝晓地,甘一萍,周军,等.数学模拟技术在污水处理工艺设计、优化、研发中的应用(上).给水排水,2004,30(5):33-36),理论上对于特定的污水处理工艺来说,在某一水质状况下较优的工艺运行参数可以通过数学模拟得到,但是原始数据的全面性、准确性和可靠性是数学模拟结果是否可靠的直接依据,如果其中的某些数据出现遗漏或者偏移实际值较大则会导致工艺模拟参数出现更大的偏差,使得工艺运行状况恶化。
发明内容
本发明克服了现有污水处理工艺数据自动采集和人工操作相分离、面向不同污水处理工艺的专家系统构建难度较大、数学模拟结果不能直接利用自动地获取的数据用来指挥工艺运行等问题,本发明提供了一种污水处理工艺的监督控制方法,该方法将现场自动采集数据和人工操作员的手工采集相结合;数学模拟软件和计算机工艺组态软件、管理信息系统,充分利用了人工操作员的经验和计算机监测和控制工作的连续性,形成一套更加可靠的人-机结合的监督控制方法。
本发明所用的技术方案是:该方法包括了硬件部分和软件部分。
其中,硬件部分包括了污水处理工艺、工艺执行元件、数据采集元件、控制模块、工业计算机、计算机终端和数据处理服务器,污水处理工艺包括进水口总进水口、总出水口、第一处理池和第二处理池、正流向管和内回流管;工艺执行元件包括第一变频流量泵、第二变频流量泵、回流变频泵、第一搅拌器、第二搅拌器;数据采集元件包括第一流量计,第二流量计,第三流量计、第一曝气口和第二曝气口;控制模块包括控制器及数据采集模块、数据总线和控制器数据线,计算机终端包括现场操作终端,远程指挥计算机,-客户查询终端。
第一自动数据采集接口为第一流量计和第一水质检测仪上所有自动数据采集接口的总称,第一控制信号接口为第一变频流量泵,第一搅拌器和第一曝气口上控制点的总称;第二自动数据采集接口为第二流量计、第三流量计和第二水质检测仪上所有自动数据采集接口的总称,第二控制信号接口为第二变频流量泵、回流变频泵,第二搅拌器和第二曝气口上控制点的总称。
工艺执行由控制器及数据采集模块通过第一控制信号接口和第二控制信号接口执行,数据采集可以由控制器及数据采集模块通过第一自动数据采集接口和第二自动数据采集接口实现,控制器及数据采集模块通过数据总线与各接口相连。
工业计算机可以通过数据总线将控制程序写入控制器及数据采集模块或者与其进行数据信息交换;现场操作终端、工业计算机、远程指挥计算机,数据处理服务器,客户查询终端通过计算机网络互联。
第一人工检测点为第一处理池所有人工观察的点的总称,第一人工操作点为第一处理池所有人工可以操作点的总称,第二人工检测点为第二处理池和内回流管上所有人工观察的点的总称,第二人工操作点为第二处理池和内回流管上所有人工可以操作点的总称。
数据采集可由现场操作员在接收到现场操作终端的指令后通过第一人工检测点和第二人工检测点使用人工检测手段检测执行,检测后的数据通过现场操作终端输入;工艺执行可由现场操作员接收到现场操作终端发出的指令后通过第一人工操作点和第二人工操作点操作执行,现场操作员的操作指令由远程指挥计算机通过计算机网络传给现场操作终端;现场操作员在执行非操作终端下达的检测或者操作指令后需将执行行为和检测结果输入现场操作终端。
第一自动数据采集接口,第一控制信号接口,第一人工检测点,第一人工操作点,第二自动数据采集接口,第二控制信号接口,第二人工检测点,第二人工操作点最终都通过计算机网络传输到数据处理服务器上。
软件部分包括工艺执行程序、工艺组态软件、客户查询人机界面、决策分析软件、管理信息系统、操作终端人机界面、工艺数学模拟软件、接口管理软件;工艺组态软件安装在工业计算机上,工艺执行程序存放于控制器及数据采集模块的存储器中,远程指挥人机界面安装在远程指挥计算机上;客户查询人机界面安装在客户查询终端上,决策分析软件、管理信息系统、工艺数学模拟软件和接口管理软件安装在数据处理服务器中,操作终端人机界面安装在现场操作终端上。
第一自动数据采集接口和第二自动数据采集接口通过工艺执行程序将数据传送给工艺组态软件,工艺组态软件可以通过工艺执行程序将控制信号传送给第一控制信号接口和第二控制信号接口;工艺组态软件同时将数据传送给操作终端人机界面,接口管理软件可以实现和工艺组态软件、工艺数学模拟软件、决策分析软件、管理信息系统的双向数据传输;现场操作员可以通过操作终端人机界面访问管理信息系统,并可以访问录入有关数据信息,远程指挥员可以通过远程指挥人机界面访问管理信息系统,并可以录入和更改有关数据信息,普通客户可以通过客户查询人机界面访问管理信息系统,查询有关信息。
该方法可以根据工艺的需要可以对现场更多的污水处理池、执行元件和检测元件进行数据采集、发送自动操作指令;现场操作终端可以是一个或者多个,且可以由不同的现场操作员执行完成。
污水处理工艺的组成要素处理池、搅拌器、曝气口数量以及相应的执行元件、数据采集元件数量可以根据工艺的需要增加或者减少。
本发明的有益效果是,该方法可以使工艺的更加准确地运行,通过采集现场工艺的数据和执行情况信息,输入数学模拟软件后得到精确的工艺模拟结果后指导工艺元件的执行,针通过实际记录操作员的操作信息和远程指挥计算机的指导,可以有效地克服现场操作员经验不足的问题。系统中如发现自动采集的数据可靠性差或数据不足则自动切换到人工操作模式,可以有效地避免突发性事件的发生。