客服电话:400-000-2365

污水处理控制系统取样检测装置

中国污水处理工程网 时间:2018-1-23 10:42:33

污水处理专利技术

  申请日2016.10.03

  公开(公告)日2017.08.25

  IPC分类号G01N1/14; G01N1/34; G01N21/59

  摘要

  本实用新型涉及一种用在印染污水物化处理领域且用于污水处理控制系统中的取样检测装置。污水处理控制系统用的取样检测装置包括通过取样口连出送水管道内印染污水的取样进水管、高压气体进气管和用于检测印染废水透光度的检测盒;取样进水管输出端连接检测盒,高压气体进气管连入在检测盒前侧的取样进水管上;检测盒包括盒体、泥水分离器以及用于检测印染废水透光度的透光度检测器,泥水分离器和透光度检测器均处在盒体内。该装置通过泥水分离器将絮状沉淀、气浮浮沫分别分离获得检测水,检测水再利用透光度检测,透光度检测检测非常稳定准确,不仅不会结垢,而且不会结污,提高了污水的控制稳定性和准确性,控制效果好。

  摘要附图

 

  权利要求书

  1.污水处理控制系统用的取样检测装置,其特征在于:取样检测装置包括通过取样口连出送水管道内印染污水的取样进水管(51)、高压气体进气管(52)和用于检测印染废水透光度的检测盒(54);取样进水管(51)输出端连接检测盒(54),高压气体进气管(52)连入在检测盒(54)前侧的取样进水管(51)上;

  所述检测盒(54)包括盒体(5a)、泥水分离器(a)以及用于检测印染废水透光度的透光度检测器(b),泥水分离器(a)和透光度检测器(b)均处在盒体(5a)内;

  泥水分离器(a)包括筒状上分离壳体(a4)、筒状下分离壳体(a2)和分离芯体(a3),筒状上分离壳体(a4)和筒状下分离壳体(a2)上下对接固定;所述筒状上分离壳体(a4)顶部密封,筒状上分离壳体(a4)下部侧壁上还设有入水口(a1),分离芯体(a3)位于筒状上分离壳体(a4)内;

  所述分离芯体(a3)包括下分离板(a32)、上分离板(a33)和用于支撑上、下分离板的立板,下分离板(a32)与上分离板(a33)均朝同方向倾斜设置,下分离板(a32)位于筒状上分离壳体(a4)底部,下分离板(a32)外周与筒状上分离壳体(a4)内壁密封连接,下分离板(a32)上端开设有供流体向上通过的下板出口(a320),所述上分离板(a33)位于下分离板(a32)上方,上分离板(a33)外周与筒状上分离壳体(a4)内壁密封连接,上分离板(a33)上端开设有供流体向上通过的絮状泥出口(a330),絮状泥出口(a330)开口朝上且位于筒状上分离壳体(a4)上部;所述筒状上分离壳体(a4)侧壁上还设有检测水出水口(a34),检测水出水口(a34)位于上分离板(a33)下端和下分离板(a32)下端之间;筒状上分离壳体(a4)侧壁上还设有排废出水口(a35),分离芯体(a3)内还设有排水通道,所述排水通道将排废出水口(a35)与絮状泥出口(a330)连通,所述排废出水口(a35)位于上分离板(a33)下端的上方;

  絮状泥出口(a330)位置高于排废出水口(a35)的上边沿;下板出口(a320)朝上,位置高于检测水出水口(a34)上边沿;

  所述入水口(a1)的进水位置低于所述下分离板(a32)上端;位于下分离板(a32)和入水口(a1)之间的分离芯体(a3)腔内还设有用于使得进水围绕其旋转的导流柱(a37),导流柱(a37)低于下分离板(a32)上端;

  所述透光度检测器(b)包括检测壳体、光源(b4)、光敏接收器(b5)和供水样流通的流动多通管道(b3);所述流动多通管道(b3)包括出水管(b32)和进水管(b30),进水管(b30)与出水管(b32)相连通,出水管(b32)为两端贯通的通管,光源(b4)的发光方向、出水管(b32)和光敏接收器(b5)大致在同一直线上;所述光源(b4)与出水管(b32)一端之间留有第一落水间隙;光敏接收器(b5)与出水管(b32)的另一端之间留有第二落水间隙;所述光源(b4)的光线贯穿出水管(b32)内并照射至光敏接收器(b5),所述检测壳体内部还设有第二进气机构,第二进气机构包括第二进气口(b12)、第二进气通道(b121)和第二出气口(b120),第二进气通道(b121)连通第二进气口(b12)和第二出气口(b120),第二进气口(b12)位于检测壳体外壁,第二出气口(b120)朝向出水管(b32)的出口处;检测壳体底部还设有供水样流出的排水口(b20);所述检测壳体包括上盖(b1)和下盖(b2),流动多通管道(b3)、光源(b4)、光敏接收器(b5)夹设于上盖(b1)和下盖(b2)之间;所述第二进气机构位于上盖(b1)内部;所述上盖(b1)内还设有第一进气机构,第一进气机构包括第一进气口(b11)、第一进气通道(b111)和两个第一出气口(b110),第一进气口(b11)通过第一进气通道(b111)分别连通两个第一出气口(b110),所述两个第一出气口(b110)分别位于光源(b4)和光敏接收器(b5)所在的一侧;

  检测盒(54)还包括用于采取水样的入水管(c1)、检测管(c3)、充气管(c4)、分离器排废管(2a)和检测器排废管(2b);取样进水管(51)和高压气体进气管(52)汇集并连入所述入水管(c1),入水管(c1)再与泥水分离器(a)的入水口(a1)连接,检测管(c3)的两端连接在泥水分离器(a)的检测水出水口(a34)和透光度检测器(b)的进水管(b30)之间;高压气体进气管(52)一支路连入充气管(c4),充气管(c4)数量有两根,它们分别与透光度检测器(b)的第一进气口(b11)、第二进气口(b12)连接,分离器排废管(2a)的输入端与分离器的排废出水口(a35)连接,检测器排废管(2b)的输入端与检测器的排水口(b20)连接;分离器排废管(2a)和检测器排废管(2b)的输出端均穿出盒体(5a)外。

  2.根据权利要求1所述的污水处理控制系统用的取样检测装置,其特征在于:取样检测装置还包括送入泵(53)和送出泵(55),送入泵(53)装于高压气体进气管(52)连入前的取样进水管(51)上,送出泵(55)装于所述分离器排废管(2a)和检测器排废管(2b)的输出端汇集之后的管道上。

  3.根据权利要求1所述的污水处理控制系统用的取样检测装置,其特征在于:透光度检测器(b)的光源(b4)和光敏接收器(b5)外均设有固定壳,所述固定壳呈圆形筒状,上盖(b1)和下盖(b2)设有用于固定壳安装的半圆形槽,固定壳外侧壁还设有固定凸肋(b40、b50),固定壳通过所述固定凸肋(b40、b50)夹于上盖(b1)和下盖(b2)之间;所述检测壳体内还设有增加流动多通管道(b3)固定效果的托架(b6),所述托架(b6)包括托台(b60)和架板(b61),架板(b61)与下盖(b2)底部之间留有供水样流通的通道,托台(b60)与架板(b61)相固定,架板(b61)与下盖(b2)连接,托台(b60)上表面设有与所述流动多通管道(b3)形状相匹配的凹槽,流动多通管道(b3)通过所述凹槽配装在所述托架(b6)上;所述上盖(b1)内还设有与所述托台(b60)相对应的压台(b13),所述压台(b13)下表面设有凹槽,所述凹槽与流动多通管道(b3)外壁相契合,流动多通管道(b3)嵌设于托台(b60)和压台(b13)之间的凹槽内;流动多通管道(b3)还包括有用于除垢剂流入的除垢管(b31),除垢管(b31)与出水管(b32)、进水管(b30)连通,流动多通管道(b3)呈十字形。

  4.根据权利要求1所述的污水处理控制系统用的取样检测装置,其特征在于:所述筒状上分离壳体(a4)底部设有第一出水口,所述第一出水口上还设有泄压阀(a5);筒状下分离壳体(a2)上端开口且对接套在筒状上分离壳体(a4)下方;泄压阀(a5)位于筒状下分离壳体(a2)内;筒状下分离壳体(a2)下部设有出水口(a211);出水口(a211)也连接分离器排废管(2a)。

  5.根据权利要求4所述的污水处理控制系统用的取样检测装置,其特征在于:泥水分离器(a)中的泄压阀(a5)包括螺接在第一出水口的筒状阀体(a51)、位于筒状阀体(a51)内的阀杆(a52)和弹簧(a54),筒状阀体(a51)内侧下部设有能够通水的弹簧座(a56),弹簧座(a56)中部设有通孔,阀杆(a52)上端设有堵头,下端穿接在所述弹簧座(a56)的通孔上;所述弹簧套在阀杆(a52)外,弹簧(a54)上端连接阀杆(a52),弹簧(a54)下端抵压于所述弹簧座(a56)上,以使所述堵头弹性抵压在所述第一出水口出口部。

  6.根据权利要求5所述的污水处理控制系统用的取样检测装置,其特征在于:所述阀杆(a52)上还设有调节螺母(a55),所述弹簧(a54)抵压于调节螺母(a55)和弹簧座(a56)之间。

  7.根据权利要求1所述的污水处理控制系统用的取样检测装置,其特征在于:第一出水口位于导流柱(a37)的一侧下方,位于导流柱(a37)的相反一侧下方的筒状上分离壳体(a4)底部上设有第二出水口,所述第二出水口出设有可拆卸的堵头(a39)。

  说明书

  污水处理控制系统用的取样检测装置

  技术领域

  本实用新型属于污水处理领域,特别是涉及一种用在印染污水物化处理领域且用于污水处理控制系统中的取样检测装置。

  背景技术

  中国是世界上最大的纺织品服装生产和出口国,因此印染行业与之息息相关,而印染行业的污水排放是我国造成水体污染的重点行业之一,与其他行业相比,印染污水具有废水排放量大,颜色深,难降解有机物含量高,水质不稳定等特点。

  针对印染污水的处理问题,现有的处理技术主要依次通过物化处理、生化处理对印染污水处理,从而降解有害物质,达到排放标准。针对目前印染污水的物化处理,现有的物化处理工序基本由操作员手工操作来完成。首先将印染污水引入水池中,因为印染污水的pH不确定,因此一般先用石灰调节pH至碱性,再加入硫酸亚铁对废水进行絮凝沉淀处理。目前对印染污水前期处理需要根据肉眼判断是否出现充分絮凝,如果未充分絮凝,那么就表明我们在处理过程中药剂加入量出现问题,没有调整到位。一般情况下,将pH调整在9-11就能充分絮凝,经过沉淀池就分离出上清液。

  针对如上的问题,公告号为CN203238083U中国专利就公开了一种自动调节处理药剂量的印染污水处理设备,但在实际处理过程中,由于国内的pH计插入印染污水中很容易被杂质堵塞,致使pH计测量值和实际值出现过大的偏差,导致控制系统不稳定。采用进口的pH也只能暂时进行精确的控制,并且pH控制非线性,难以使其维持稳定。

  当然,公开号为CN104034702A的中国实用新型专利公开说明书就公开了一种用于检测印染污水透光度的检测盒,该检测盒不仅可直接对进入其内的印染污水进行透光能力检测,测得光强弱的信号作为可利用的控制信号,以表达分离出上清液的澄清度,从而用来代替人眼观察印染污水是否充分絮凝。这样控制就从pH值作为控制点改为透光度作为控制点。但是考虑到CN104034702A公开的检测盒在检测时,印染污水容易在光源和光感应元件表面结污,导致透光度和感光能力双重下降,使用一段时间后,这种检测盒在检测准确性和稳定性上不是很好,而且还存在耐用性等诸多问题,拆卸维修比较麻烦,最终导致控制系统不稳定。

  除了透光能力检测的检测盒之外,一直困难控制系统的还有透光度检测的检测对象,因为检测对象的水质没有进行分离,常含有沉淀、杂质、絮状物等,不仅容易使得透光度的检测盒结垢影响检测,而且沉淀、杂质以及絮状物还会干扰检测,影响透光度的数据,从而影响控制系统的准确性,易出现控制不稳定,控制效果差。

  现有技术中一直缺乏能够合理采集控制信号的取样检测装置。

  实用新型内容

  针对现有技术所指出的不足,本实用新型的发明目的在于提供一种用在污水处理控制系统中的设备,且能够高效从取样水分离待检测清夜作为检测对象;同时,透光度检测器检测非常稳定准确,不仅不会结垢,而且光源和光感应元件的表面还不会结污的取样检测装置。

  为了实现上述发明目的,本实用新型采用了以下技术方案:

  一种污水处理控制系统用的取样检测装置,取样检测装置包括通过取样口连出送水管道内印染污水的取样进水管、高压气体进气管和用于检测印染废水透光度的检测盒;取样进水管输出端连接检测盒,高压气体进气管连入在检测盒前侧的取样进水管上;所述检测盒包括盒体、泥水分离器以及用于检测印染废水透光度的透光度检测器,泥水分离器和透光度检测器均处在盒体内;泥水分离器包括筒状上分离壳体、筒状下分离壳体和分离芯体,筒状上分离壳体和筒状下分离壳体上下对接固定;所述筒状上分离壳体顶部密封,筒状上分离壳体下部侧壁上还设有入水口,分离芯体位于筒状上分离壳体内;所述分离芯体包括下分离板、上分离板和用于支撑上、下分离板的立板,下分离板与上分离板均朝同方向倾斜设置,下分离板位于筒状上分离壳体底部,下分离板外周与筒状上分离壳体内壁密封连接,下分离板上端开设有供流体向上通过的下板出口,所述上分离板位于下分离板上方,上分离板外周与筒状上分离壳体内壁密封连接,上分离板上端开设有供流体向上通过的絮状泥出口,絮状泥出口开口朝上且位于筒状上分离壳体上部;所述筒状上分离壳体侧壁上还设有检测水出水口,检测水出水口位于上分离板下端和下分离板下端之间;筒状上分离壳体侧壁上还设有排废出水口,分离芯体内还设有排水通道,所述排水通道将排废出水口与絮状泥出口连通,所述排废出水口位于上分离板下端的上方;絮状泥出口位置高于排废出水口的上边沿;下板出口朝上,位置高于检测水出水口上边沿;所述入水口的进水位置低于所述下分离板上端;位于下分离板和入水口之间的分离芯体腔内还设有用于使得进水围绕其旋转的导流柱,导流柱低于下分离板上端;所述透光度检测器包括检测壳体、光源、光敏接收器和供水样流通的流动多通管道;所述流动多通管道包括出水管和进水管,进水管与出水管相连通,出水管为两端贯通的通管,光源的发光方向、出水管和光敏接收器大致在同一直线上;所述光源与出水管一端之间留有第一落水间隙;光敏接收器与出水管的另一端之间留有第二落水间隙;所述光源的光线贯穿出水管内并照射至光敏接收器,所述检测壳体内部还设有第二进气机构,第二进气机构包括第二进气口、第二进气通道和第二出气口,第二进气通道连通第二进气口和第二出气口,第二进气口位于检测壳体外壁,第二出气口朝向出水管的出口处;检测壳体底部还设有供水样流出的出水口;所述检测壳体包括上盖和下盖,流动多通管道、光源、光敏接收器夹设于上盖和下盖之间;所述第二进气机构位于上盖内部;所述上盖内还设有第一进气机构,第一进气机构包括第一进气口、第一进气通道和两个第一出气口,第一进气口通过第一进气通道分别连通两个第一出气口,所述两个第一出气口分别位于光源和光敏接收器所在的一侧;检测盒还包括用于采取水样的入水管、检测管、充气管、分离器排废管和检测器排废管;取样进水管和高压气体进气管汇集并连入所述入水管,入水管再与泥水分离器的入水口连接,检测管的两端连接在泥水分离器的检测水出水口和透光度检测器的进水管之间;高压气体进气管一支路连入充气管,充气管数量有两根,它们分别与透光度检测器的第一进气口、第二进气口连接,分离器排废管的输入端与分离器的排废出水口连接,检测器排废管的输入端与检测器的出水口连接;分离器排废管和检测器排废管的输出端均穿出盒体外。

  作为优选,取样检测装置包括还包括送入泵和送出泵,送入泵装于高压气体进气管连入前的取样进水管上,送出泵装于所述分离器排废管和检测器排废管的输出端汇集之后的管道上。

  作为优选,透光度检测器的光源和光敏接收器外均设有固定壳,所述固定壳呈圆形筒状,上盖和下盖设有用于固定壳安装的半圆形槽,固定壳外侧壁还设有固定凸肋,固定壳通过所述固定凸肋夹于上盖和下盖之间;所述检测壳体内还设有增加流动多通管道固定效果的托架,所述托架包括托台和架板,架板与下盖底部之间留有供水样流通的通道,托台与架板相固定,架板与下盖连接,托台上表面设有与所述流动多通管道形状相匹配的凹槽,流动多通管道通过所述凹槽配装在所述托架上;所述上盖内还设有与所述托台相对应的压台,所述压台下表面设有凹槽,所述凹槽与流动多通管道外壁相契合,流动多通管道嵌设于托台和压台之间的凹槽内;流动多通管道还包括有用于除垢剂流入的除垢管,除垢管与出水管、进水管连通,流动多通管道呈十字形。

  作为优选,所述筒状上分离壳体底部设有第一出水口,所述第一出水口上还设有泄压阀;筒状下分离壳体上端开口且对接套在筒状上分离壳体下方;泄压阀位于筒状下分离壳体内;筒状下分离壳体下部设有出水口;出水口也连接分离器排废管。

  作为优选,泥水分离器中的泄压阀包括螺接在第一出水口的筒状阀体、位于筒状阀体内的阀杆和弹簧,筒状阀体内侧下部设有能够通水的弹簧座,弹簧座中部设有通孔,阀杆上端设有堵头,下端穿接在所述弹簧座的通孔上;所述弹簧套在阀杆外,弹簧上端连接阀杆,弹簧下端抵压于所述弹簧座上,以使所述堵头弹性抵压在所述第一出水口出口部。

  作为优选,所述阀杆上还设有调节螺母,所述弹簧抵压于调节螺母和弹簧座之间。

  作为优选,第一出水口位于导流柱的一侧下方,位于导流柱的相反一侧下方的筒状上分离壳体底部上设有第二出水口,所述第二出水口出设有可拆卸的堵头。

  与现有技术相比,本实用新型采用了上述技术方案,其有益效果如下:

  一、为了获得更加好的控制效果,本实用新型主要靠印染污水中需要检测水进行处理,获得最佳的检测对象,因此本实用新型利用了絮凝物气浮分离方式,获得不含絮状物的清液。该清液检测水替代上清液更加合适稳定。为了获取该清液,本实用新型具有泥水分离器,将高压气和印染污水混合通入,获取中间层清液。本实用新型的泥水分离器具有如下优点:

  1、泥水分离器的分离芯体内的下分离板使水样的内的漂浮物进行集中于下板出口,上分离板对抽取的水样中的浮沫进行分离,可以过滤掉大部分不可溶的漂浮颗粒物;检测水出水口位于上、下分离板两个下端之间,在检测水出水口抽取水样时,经过下分离板过滤的水流沿着上分离板向检测水出水口流动,浮沫受到浮力作用沿上分离板向上移动,水流流动方向与浮沫移动方向相反,进一步加强分离,使分离效果更为明显。

  2、排废出水口通过排水通道与絮状泥出口连通,可以及时的将浮沫排出,避免分离芯体内浮沫堆积影响检测数据,使检测得到的数据更为准确可靠。

  3、若是水流从顶部进入分离芯体类似于向茶杯内倒水,进入的水流会将液体表面的已经分离好的浮沫重新带入水中,造成分离效率低下。因此本实用新型中的入水口位于壳体的底部,由分离芯体的底部向上进行注水,浮沫的运动方向一直保持在延水流运动的方向,浮沫的运动较小,能够快速的沿分离板被分离出水,分离效率高速度快,可达到实时连续在线对水体质量进行检测的目的。

  4、上、下分离板、排水通道、絮状泥出口以及检测水出水口抽水的通道均集成于一个分离芯体内,分离芯体外部包裹筒状壳体,有效的缩小整个分离器的体积,有效降低空间占有率。

  二、为了获得更加好的控制效果,本实用新型还需要透光度检测器,本实用新型中的透光度检测器的结构设置是将光源、出水管和光敏接收器分离设置,使得光源与出水管一端之间留有第一落水间隙;光敏接收器与出水管的另一端之间留有第二落水间隙;光源的光线通过先透过第一落水间隙的空气,再透过出水管内的水,再透光过第二落水间隙中的空气,最终射入光敏接收器,这种结构设置可以避免出水管出来的水柱流向光源或光敏接收器,保护光源和光敏接收器免收水渍和污物沾染而影响透光效果,提高检测的稳定性和准确性;出水管为两端贯通的通管不仅使得出水管难以结垢堵塞,而且还降低该透光度检测器对出水管的清洗频次,同时也延长了透光度检测器的使用寿命,即提高耐用性。

  另外,第二出气口产生的高速气流可以将出水管出口处的粘性淤泥等污垢进行吹动,使其移动避免粘性淤泥粘附于出水管表面,避免出水管出口处结垢现象,降低清洗次数,延长维修周期。