申请日2016.01.26
公开(公告)日2016.06.22
IPC分类号B01J20/26; C02F1/28; C02F101/20
摘要
本发明公开了一种污水重金属离子吸附剂的介孔碳材料及其制备方法,由以下成分以重量份制备而成:硅酸钠10-15份、脱乙酰甲壳素1-3份、聚丙烯酰胺2-4份、硫酸镁0.5-1份、双聚氰胺0.5-1份、氯化锌0.1-0.2份、氯酸钾1-3份、木质素0.2-0.6份、三氯异氰尿酸钠0.2-0.4份、十二烷基二甲基苄基氯化铵0.3-0.5份、浓硫酸0.4-0.6份、石墨烯纳米层/MnO2复合物5-10份、壳聚糖-石墨烯复合材料6-12份、干河道污泥20-30份、水40-50份。
权利要求书
1.一种污水重金属离子吸附剂的介孔碳材料,其特征是由以下成分以重量份制备而成:硅酸钠10-15份、脱乙酰甲壳素1-3份、聚丙烯酰胺2-4份、硫酸镁0.5-1份、双聚氰胺0.5-1份、氯化锌0.1-0.2份、氯酸钾1-3份、木质素0.2-0.6份、三氯异氰尿酸钠0.2-0.4份、十二烷基二甲基苄基氯化铵0.3-0.5份、浓硫酸0.4-0.6份、石墨烯纳米层/MnO2复合物5-10份、壳聚糖-石墨烯复合材料6-12份、干河道污泥20-30份、水40-50份。
2.一种如权利要求1所述的污水重金属离子吸附剂的介孔碳材料,其特征是由以下成分以重量份制备而成:硅酸钠12份、脱乙酰甲壳素2份、聚丙烯酰胺3份、硫酸镁0.7份、双聚氰胺0.8份、氯化锌0.1份、氯酸钾2份、木质素0.3份、三氯异氰尿酸钠0.3份、十二烷基二甲基苄基氯化铵0.4份、浓硫酸0.5份、石墨烯纳米层/MnO2复合物8份、壳聚糖-石墨烯复合材料9份、干河道污泥25份、水45份。
3.根据权利要求1所述的污水重金属离子吸附剂的介孔碳材料,其特征在于:还包括硅藻土6-12重量份。
4.一种如权利要求1所述的污水重金属离子吸附剂的介孔碳材料,其特征是:还包括膨润土6-12重量份。
5.一种如权利要求1或2所述的污水重金属离子吸附剂的介孔碳材料的制备方法,其特征是包括以下步骤:
步骤1:将硅酸钠和10-15份水在室温下混合搅拌15min,在搅拌后的溶液中加入浓硫酸与4-5份水的混合液,继续搅拌20min,得混合液A;
步骤2:在混合液A中加入硫酸镁、三氯异氰尿酸钠和脱乙酰甲壳素,升温至70℃搅拌40min后降至室温静置10h得混合溶液B;
步骤3:将聚丙烯酰胺、硫酸镁、木质素、双聚氰胺、氯化锌、氯酸钾、十二烷基二甲基苄基氯化铵和4-8份水混合,搅拌15min后加入混合溶液B中继续搅拌1h,得混合溶液C;
步骤4:将步骤3得到的混合溶液C与、石墨烯纳米层/MnO2复合物、壳聚糖-石墨烯复合材料和干河道污泥混合,并加入剩余的水搅拌均匀得混合液D;
步骤5:将步骤4得到的混合液D放入烘干装置中在80℃-160℃下进行干化处理;
步骤6:将步骤5干化处理过的固体物,放入碳化炉中在氮气氛围下进行碳化处理,碳化过程为,在15℃/min的升温速率下升温至600℃-900℃,碳化时间控制在2-3h;
步骤7:将步骤6得到的固体研磨粉碎,过筛至400目得介孔碳材料。
6.根据权利要求5所述的污水重金属离子吸附剂的介孔碳材料的制备方法,其特征是:所述步骤4具体为:将步骤3得到的混合溶液C与、石墨烯纳米层/MnO2复合物、壳聚糖-石墨烯复合材料、硅藻土和干河道污泥混合,并加入剩余的水搅拌均匀得混合液D。
7.根据权利要求5所述的污水重金属离子吸附剂的介孔碳材料的制备方法,其特征是:所述步骤4具体为:将步骤3得到的混合溶液C与、石墨烯纳米层/MnO2复合物、壳聚糖-石墨烯复合材料、膨润土和干河道污泥混合,并加入剩余的水搅拌均匀得混合液D。
说明书
一种污水重金属离子吸附剂的介孔碳材料及其制备方法
技术领域
本发明涉及一种污泥的处理技术,具体地涉及一种污水重金属离子吸附剂的介孔碳材料及其制备方法。
背景技术
河道中的污泥中含有大量寄生虫(卵)、病原菌、铬、铜、锌、汞等重金属、盐类以及多氯联苯、二噁英、放射性核素等难降解的有毒有害物。这些物质对环境和人类健康可能造成较大危害。另外污泥中还含有其他有毒有机化合物。其毒性主要来自于游离氰基,如含氰的电镀废水。河道中的有机物污染主要有氰化物、氟化物、挥发酚以及多环芳烃、苯等。如氰化物是含有-CN基的一类化合物总称,为有毒化合物,这些有机化合物会通过食物链进入人体并在体内富集,具有持久危害性,会对人体的免疫系统造成损害。传统的处理方法有:卫生填埋,污泥堆肥及农用,污泥焚烧,海洋倾倒。然而这些处理方式往往存在着大量占地、污染空气及地下水的弊端,并不能够达到合理安全处置的效果,随着环保标准的逐步提高和人们环保意识的增强,这些传统的处置方式已渐渐受到环保法规和资源的限制。通过焙烧将污泥制备成吸附碳材料,用于环境修复,成为污泥近来年资源化的热点问题,受到研究者和环保领域的关注。
污泥中含有较多的碳,经炭化活化后可制成活性炭吸附剂,可作有机废水处理剂,同时污泥中的重金属得到一定程度的固化。利用污泥制备活性炭有着巨大的潜力,极大的优越性,泥质活性炭代替商品活性炭可以节省木材,煤炭等原料,同时降低了活性炭的生产成本。而且可解决日益突出的河道污泥的污染问题,同时泥质活性炭用于水处理,以废治废,符合国内外固体废物的资源化、无害化、减量化处置原则。所生产的碳吸附材料具有高度发达的孔隙结构和极大的比表面积,经过不同工艺调节孔径后能适合处理分子直径不一的污染物。据报道,在碳材料的各种孔结构(微孔、介孔、大孔)当中,介孔在液相吸附方面发挥了重要作用,尤其对类似于染料这类大分子污染物的去除,更为突出,以介孔为主的多孔碳材料往往比传统的微孔吸附材料表现出更强大的吸附性能。
发明内容
有鉴于此,为弥补传统活性炭材料吸附能力的不足,发挥介孔在液相吸附方面的重要作用,减少活化剂的使用,本发明采用类模板法,在不使用任何化学活化剂的条件下,利用河道污泥为碳源前躯体,常用的絮凝剂作为模板剂来合成介孔碳材料,无疑是传统碳吸附材料最有效的替代品。本发明的目的是提供一种清洁环保,安全绿色的处置方式,将河道污泥进行减量化、安全化和资源化处理,制备出具有丰富的介孔,吸附能力强,吸附速率快的一种污水重金属离子吸附剂的介孔碳材料及其制备方法。
本发明提供了一种污水重金属离子吸附剂的介孔碳材料,技术方案是:
一种污水重金属离子吸附剂的介孔碳材料,由以下成分以重量份制备而成:硅酸钠10-15份、脱乙酰甲壳素1-3份、聚丙烯酰胺2-4份、硫酸镁0.5-1份、双聚氰胺0.5-1份、氯化锌0.1-0.2份、氯酸钾1-3份、木质素0.2-0.6份、三氯异氰尿酸钠0.2-0.4份、十二烷基二甲基苄基氯化铵0.3-0.5份、浓硫酸0.4-0.6份、石墨烯纳米层/MnO2复合物5-10份、壳聚糖-石墨烯复合材料6-12份、干河道污泥20-30份、水40-50份。
优化的,一种如权利要求1所述的污水重金属离子吸附剂的介孔碳材料,是由以下成分以重量份制备而成:硅酸钠12份、脱乙酰甲壳素2份、聚丙烯酰胺3份、硫酸镁0.7份、双聚氰胺0.8份、氯化锌0.1份、氯酸钾2份、木质素0.3份、三氯异氰尿酸钠0.3份、十二烷基二甲基苄基氯化铵0.4份、浓硫酸0.5份、石墨烯纳米层/MnO2复合物8份、壳聚糖-石墨烯复合材料9份、干河道污泥25份、水45份。
优选的,还包括硅藻土6-12重量份。
优选的,还包括膨润土6-12重量份。
本发明还提供一种污水重金属离子吸附剂的介孔碳材料的制备方法,具体包括以下步骤:
步骤1:将硅酸钠和10-15份水在室温下混合搅拌15min,在搅拌后的溶液中加入浓硫酸与4-5份水的混合液,继续搅拌20min,得混合液A;
步骤2:在混合液A中加入硫酸镁、三氯异氰尿酸钠和脱乙酰甲壳素,升温至70℃搅拌40min后降至室温静置10h得混合溶液B;
步骤3:将聚丙烯酰胺、硫酸镁、木质素、双聚氰胺、氯化锌、氯酸钾、十二烷基二甲基苄基氯化铵和4-8份水混合,搅拌15min后加入混合溶液B中继续搅拌1h,得混合溶液C;
步骤4:将步骤3得到的混合溶液C与石墨烯纳米层/MnO2复合物、壳聚糖-石墨烯复合材料和干河道污泥混合,并加入剩余的水搅拌均匀得混合液D;
步骤5:将步骤4得到的混合液D放入烘干装置中在80℃-160℃下进行干化处理;
步骤6:将步骤5干化处理过的固体物,放入碳化炉中在氮气氛围下进行碳化处理,碳化过程为,在15℃/min的升温速率下升温至600℃-900℃,碳化时间控制在2-3h;
步骤7:将步骤6得到的固体研磨粉碎,过筛至400目得介孔碳材料。
优选的步骤4具体为:将步骤3得到的混合溶液C与、石墨烯纳米层/MnO2复合物、壳聚糖-石墨烯复合材料、硅藻土和干河道污泥混合,并加入剩余的水搅拌均匀得混合液D。
优选的步骤4具体为:将步骤3得到的混合溶液C与、石墨烯纳米层/MnO2复合物、壳聚糖-石墨烯复合材料、膨润土和干河道污泥混合,并加入剩余的水搅拌均匀得混合液D。
石墨烯纳米层(GNS)/MnO2复合物(GNS/MnO2)在去除污水中的重金属离子效果好,去除废水中Ni2+、Pb2+和Cu2+三种重金属离子的效果更佳,GNS作为载体,增大了吸附剂的比表面积,MnO2起主要的吸附作用,5次重复使用之后,GNS/MnO2的吸附能力还能恢复到91%,有很好的再生能力。
壳聚糖-石墨烯复合材料具有较大的比表面积和独特的介孔结构,壳聚糖-石墨烯复合材料的双倍螺旋结构、壳聚糖和石墨烯之间的静电作用、氢键作用和范德华力都增强了对金属离子的去除能力。
交联累托石是利用累托石粘土的阳离子交换性能,选择交联剂如聚合羟基金属阳离子或者氧化物等,使累托石粘土可膨胀间层被交联剂柱撑开而获得更大的层间距,改善天然累托石的性能。交联累托石结构稳定,不发生膨胀,具有较大的比表面积、离子交换容量和微孔孔径而且具有热稳定性好、表面酸性强等特点,吸附能力增大70%以上,具有较大的层厚度,是一种性能优异的催化剂和吸附剂。
膨润土(bentonite)是一种以蒙脱石(montmorillonite)为主要成分的粘土矿物。其化学成分为铝硅酸盐,化学式为Al2O3·4SiO2·3H2O。微观结构的单位晶胞由两个Si2O四面体晶片和它们之间夹着的一个Al2O或Al2OH八面体晶片组成,膨润土具有较强的吸附性和离子交换性。
本发明首次采用的合成污泥基介孔碳材料,可实现对材料孔道结构的方便调控,工艺简单,具有工业应用化前景。合成出的污泥基介孔碳材料孔径分布比传统的污泥基碳吸附材料更窄,这样更有利于吸附过程中孔隙间的传质效应,提高吸附速率。本发明合成出的介孔碳材料具有良好的吸附性能,吸附能力优于市面的活性炭产品,可用于污水处置及水中毒害物的去除,由于其出色的孔道分布及强大的孔容,也可以适用于载体材料。
具体实施方式
下面本发明的具体实施方式作进一步的详细说明。凡采用等同替换或等效变换的方式所获得的替代方案,均处于本发明的保护范围之中。
实施例1:
一种污水重金属离子吸附剂的介孔碳材料,由以下成分以重量份制备而成:硅酸钠10份、脱乙酰甲壳素1份、聚丙烯酰胺2份、硫酸镁0.5份、双聚氰胺0.5份、氯化锌0.1份、氯酸钾1份、木质素0.2份、三氯异氰尿酸钠0.2份、十二烷基二甲基苄基氯化铵0.3份、浓硫酸0.4份、石墨烯纳米层/MnO2复合物5份、壳聚糖-石墨烯复合材料6份、干河道污泥20份、水40份。
上述碳材料的制备方法,具体包括以下步骤:
步骤1:将硅酸钠和10-15份水在室温下混合搅拌15min,在搅拌后的溶液中加入浓硫酸与4-5份水的混合液,继续搅拌20min,得混合液A;
步骤2:在混合液A中加入硫酸镁、三氯异氰尿酸钠和脱乙酰甲壳素,升温至70℃搅拌40min后降至室温静置10h得混合溶液B;
步骤3:将聚丙烯酰胺、硫酸镁、木质素、双聚氰胺、氯化锌、氯酸钾、十二烷基二甲基苄基氯化铵和4-8份水混合,搅拌15min后加入混合溶液B中继续搅拌1h,得混合溶液C;
步骤4:将步骤3得到的混合溶液C与石墨烯纳米层/MnO2复合物、壳聚糖-石墨烯复合材料和干河道污泥混合,并加入剩余的水搅拌均匀得混合液D;
步骤5:将步骤4得到的混合液D放入烘干装置中在80℃-160℃下进行干化处理;
步骤6:将步骤5干化处理过的固体物,放入碳化炉中在氮气氛围下进行碳化处理,碳化过程为,在15℃/min的升温速率下升温至600℃-900℃,碳化时间控制在2-3h;
步骤7:将步骤6得到的固体研磨粉碎,过筛至400目得介孔碳材料。
实施例2:
一种污水重金属离子吸附剂的介孔碳材料,由以下成分以重量份制备而成:硅酸钠15份、脱乙酰甲壳素3份、聚丙烯酰胺4份、硫酸镁1份、双聚氰胺1份、氯化锌0.2份、氯酸钾3份、木质素0.6份、三氯异氰尿酸钠0.4份、十二烷基二甲基苄基氯化铵0.5份、浓硫酸0.6份、石墨烯纳米层/MnO2复合物10份、壳聚糖-石墨烯复合材料12份、干河道污泥30份、水50份。
上述碳材料的制备方法,具体包括以下步骤:
步骤1:将硅酸钠和10-15份水在室温下混合搅拌15min,在搅拌后的溶液中加入浓硫酸与4-5份水的混合液,继续搅拌20min,得混合液A;
步骤2:在混合液A中加入硫酸镁、三氯异氰尿酸钠和脱乙酰甲壳素,升温至70℃搅拌40min后降至室温静置10h得混合溶液B;
步骤3:将聚丙烯酰胺、硫酸镁、木质素、双聚氰胺、氯化锌、氯酸钾、十二烷基二甲基苄基氯化铵和4-8份水混合,搅拌15min后加入混合溶液B中继续搅拌1h,得混合溶液C;
步骤4:将步骤3得到的混合溶液C与石墨烯纳米层/MnO2复合物、壳聚糖-石墨烯复合材料和干河道污泥混合,并加入剩余的水搅拌均匀得混合液D;
步骤5:将步骤4得到的混合液D放入烘干装置中在80℃-160℃下进行干化处理;
步骤6:将步骤5干化处理过的固体物,放入碳化炉中在氮气氛围下进行碳化处理,碳化过程为,在15℃/min的升温速率下升温至600℃-900℃,碳化时间控制在2-3h;
步骤7:将步骤6得到的固体研磨粉碎,过筛至400目得介孔碳材料。
实施例3:
一种污水重金属离子吸附剂的介孔碳材料,由以下成分以重量份制备而成:硅酸钠12份、脱乙酰甲壳素2份、聚丙烯酰胺3份、硫酸镁0.7份、双聚氰胺0.8份、氯化锌0.1份、氯酸钾2份、木质素0.3份、三氯异氰尿酸钠0.3份、十二烷基二甲基苄基氯化铵0.4份、浓硫酸0.5份、石墨烯纳米层/MnO2复合物8份、壳聚糖-石墨烯复合材料9份、干河道污泥25份、水45份。
上述碳材料的制备方法,具体包括以下步骤:
步骤1:将硅酸钠和10-15份水在室温下混合搅拌15min,在搅拌后的溶液中加入浓硫酸与4-5份水的混合液,继续搅拌20min,得混合液A;
步骤2:在混合液A中加入硫酸镁、三氯异氰尿酸钠和脱乙酰甲壳素,升温至70℃搅拌40min后降至室温静置10h得混合溶液B;
步骤3:将聚丙烯酰胺、硫酸镁、木质素、双聚氰胺、氯化锌、氯酸钾、十二烷基二甲基苄基氯化铵和4-8份水混合,搅拌15min后加入混合溶液B中继续搅拌1h,得混合溶液C;
步骤4:将步骤3得到的混合溶液C与石墨烯纳米层/MnO2复合物、壳聚糖-石墨烯复合材料和干河道污泥混合,并加入剩余的水搅拌均匀得混合液D;
步骤5:将步骤4得到的混合液D放入烘干装置中在80℃-160℃下进行干化处理;
步骤6:将步骤5干化处理过的固体物,放入碳化炉中在氮气氛围下进行碳化处理,碳化过程为,在15℃/min的升温速率下升温至600℃-900℃,碳化时间控制在2-3h;
步骤7:将步骤6得到的固体研磨粉碎,过筛至400目得介孔碳材料。
实施例4:
一种污水重金属离子吸附剂的介孔碳材料,由以下成分以重量份制备而成:硅酸钠12份、脱乙酰甲壳素2份、聚丙烯酰胺3份、硫酸镁0.7份、双聚氰胺0.8份、氯化锌0.1份、氯酸钾2份、木质素0.3份、三氯异氰尿酸钠0.3份、十二烷基二甲基苄基氯化铵0.4份、浓硫酸0.5份、石墨烯纳米层/MnO2复合物8份、壳聚糖-石墨烯复合材料9份、硅藻土9份、干河道污泥25份、水45份。
上述碳材料的制备方法,具体包括以下步骤:
步骤1:将硅酸钠和10-15份水在室温下混合搅拌15min,在搅拌后的溶液中加入浓硫酸与4-5份水的混合液,继续搅拌20min,得混合液A;
步骤2:在混合液A中加入硫酸镁、三氯异氰尿酸钠和脱乙酰甲壳素,升温至70℃搅拌40min后降至室温静置10h得混合溶液B;
步骤3:将聚丙烯酰胺、硫酸镁、木质素、双聚氰胺、氯化锌、氯酸钾、十二烷基二甲基苄基氯化铵和4-8份水混合,搅拌15min后加入混合溶液B中继续搅拌1h,得混合溶液C;
步骤4:将步骤3得到的混合溶液C与石墨烯纳米层/MnO2复合物、壳聚糖-石墨烯复合材料、硅藻土和干河道污泥混合,并加入剩余的水搅拌均匀得混合液D;
步骤5:将步骤4得到的混合液D放入烘干装置中在80℃-160℃下进行干化处理;
步骤6:将步骤5干化处理过的固体物,放入碳化炉中在氮气氛围下进行碳化处理,碳化过程为,在15℃/min的升温速率下升温至600℃-900℃,碳化时间控制在2-3h;
步骤7:将步骤6得到的固体研磨粉碎,过筛至400目得介孔碳材料。
实施例5:
一种污水重金属离子吸附剂的介孔碳材料,由以下成分以重量份制备而成:硅酸钠12份、脱乙酰甲壳素2份、聚丙烯酰胺3份、硫酸镁0.7份、双聚氰胺0.8份、氯化锌0.1份、氯酸钾2份、木质素0.3份、三氯异氰尿酸钠0.3份、十二烷基二甲基苄基氯化铵0.4份、浓硫酸0.5份、石墨烯纳米层/MnO2复合物8份、壳聚糖-石墨烯复合材料9份、膨润土9份、干河道污泥25份、水45份。
上述碳材料的制备方法,具体包括以下步骤:
步骤1:将硅酸钠和10-15份水在室温下混合搅拌15min,在搅拌后的溶液中加入浓硫酸与4-5份水的混合液,继续搅拌20min,得混合液A;
步骤2:在混合液A中加入硫酸镁、三氯异氰尿酸钠和脱乙酰甲壳素,升温至70℃搅拌40min后降至室温静置10h得混合溶液B;
步骤3:将聚丙烯酰胺、硫酸镁、木质素、双聚氰胺、氯化锌、氯酸钾、十二烷基二甲基苄基氯化铵和4-8份水混合,搅拌15min后加入混合溶液B中继续搅拌1h,得混合溶液C;
步骤4:将步骤3得到的混合溶液C与石墨烯纳米层/MnO2复合物、壳聚糖-石墨烯复合材料、膨润土和干河道污泥混合,并加入剩余的水搅拌均匀得混合液D;
步骤5:将步骤4得到的混合液D放入烘干装置中在80℃-160℃下进行干化处理;
步骤6:将步骤5干化处理过的固体物,放入碳化炉中在氮气氛围下进行碳化处理,碳化过程为,在15℃/min的升温速率下升温至600℃-900℃,碳化时间控制在2-3h;
步骤7:将步骤6得到的固体研磨粉碎,过筛至400目得介孔碳材料。