您现在的位置: 中国污水处理工程网 >> 技术转移 >> 正文

污水处理场曝气风量控制技术

发布时间:2018-12-20 16:50:32  中国污水处理工程网

  申请日2005.01.13

  公开(公告)日2005.07.20

  IPC分类号C02F3/12; C02F7/00

  摘要

  提供能够一直保持良好水质,同时使曝气风量减少的污水处理场的曝气风量控制装置。其特征是,在具备利用具有好氧槽12的生物反应槽进行水处理时,根据曝气风量目标值向好氧槽供给空气的曝气装置时,具有测量好氧槽内的氨性氮浓度的氨计41;设定好氧槽的放出水的氨性氮浓度目标值的氨控制目标设定手段41;运算出使测得的氨性氮浓度接近设定好的氨性氮浓度目标值的曝气风量目标值的氨调节器40;将氨计26设置在以好氧槽中的水流方向看,从出口部分向上游方向回溯约20~40%的位置,并且将氨性氮浓度的控制目标值设定为约1mg/L~3mg/L。

  权利要求书

  1、污水处理场的曝气流量控制装置,其特征在于,在包括了通过含有好氧槽的生物反应槽进行水处理时,根据曝气风量目标值提供空气给前述好氧槽的曝气装置的污水处理场的曝气风量控制装置中,具有测量前述好氧槽内的氨性氮浓度的氨计;设定前述好氧槽的放出水的氨性氮浓度目标值的氨控制目标设定手段;为使测得的氨性氮浓度接近设定好的氨性氮浓度目标值而进行曝气风量目标值的运算的氨调节器;将前述氨计设置在相对前述好氧槽的总长度,从出口部分向上游方向回溯约20~40%的位置,并且将氨性氮浓度的控制目标值设定为约1mg/L~3mg/L。

  2、根据权利要求1所述的污水处理场的曝气风量控制装置,其特征在于,具有测量前述生物反应槽的流入水量的流入流量计、和测量流入水的总氮浓度的流入总氮计;前述氨调节器也采纳分别测得的流入水量和总氮浓度运算曝气风量目标值。

  3、根据权利要求1所述的污水处理场的曝气风量控制装置,其特征在于,具有对前述流入总氮计的异常作出判断的异常判断部;判定为异常时,前述氨调节器只采纳前述流入流量计的测量值信息,运算曝气风量目标值。

  4、根据权利要求1所述的污水处理场的曝气风量控制装置,其特征在于,除了前述流入总氮计仪器自身的异常和传输异常等硬件故障之外,前述异常判断部还以测量值的时间序列数据的偏差超过规定的阈值作为异常判断基准。

  5、污水处理场的曝气风量控制装置,它包括在通过具有好氧槽的生物反应槽进行水处理时,根据曝气风量目标值向前述好氧槽供给空气的曝气装置,其特征在于,包括测量前述好氧槽内的氨性氮浓度的氨计;测定前述好氧槽内的溶解氧浓度的溶解氧浓度计;设定前述好氧槽内的氨性氮浓度目标值的氨控制目标设定手段;设定前述好氧槽内的溶解氧浓度的下限值的溶解氧浓度下限设定手段;以及曝气风量调节器,该曝气风量调节器含有为使测得的氨性氮浓度接近设定好的氨性氮浓度目标值而进行曝气风量目标值的运算的氨调节器,以及在测得的溶解氧浓度在设定好的溶解氧浓度的下限值以下时,修正前述曝气风量目标值的溶解氧下限调节器。

  6、根据权利要求5所述的污水处理场的曝气风量控制装置,其特征在于,前述曝气风量调节器含有前述氨调节器、以及为使测得的溶解氧浓度接近设定好的溶解氧浓度下限值而进行曝气风量目标值的运算的溶解氧调节器;根据测得的溶解氧浓度、氨性氮浓度的值、设定好的溶解氧浓度下限值、氨性氮浓度目标值,进行氨调节器和溶解氧浓度调节器的切换。

  7、根据权利要求5所述的污水处理场的曝气风量控制装置,其特征在于,将前述氨计设置在以前述好氧槽中的水流方向看,从终端向上游回溯约25~35%的位置,并且将氨性氮浓度的控制目标值设定为约1mg/L~3mg/L。

  8、根据权利要求5所述的污水处理场的曝气风量控制装置,其特征在于,具有测量前述生物反应槽的流入水量的流入流量计、和测量流入水的总氮浓度的流入总氮计;前述氨调节器也采纳分别测得的流入水量和总氮浓度运算曝气风量目标值。

  9、根据权利要求5所述的污水处理场的曝气风量控制装置,其特征在于,具有对前述流入总氮计的异常作出判断的异常判断部,判定为异常时,前述氨调节器只采纳前述流入流量计的测量值信息,运算曝气风量目标值。

  10、根据权利要求9所述的污水处理场的曝气风量控制装置,其特征在于,除了前述流入总氮计仪器自身的异常和传输异常等硬件故障之外,前述异常判断部还以测量值的时间序列数据的偏差超过规定的阈值作为异常判断基准。

  11、污水处理场的曝气风量控制装置,它包括在通过具有好氧槽的生物反应槽进行水处理时,根据曝气风量目标值向前述好氧槽供给空气的曝气装置,其特征在于,具有测量前述好氧槽内的氨性氮浓度的氨计;测量前述好氧槽内的溶解氧浓度的溶解氧浓度计;设定前述好氧槽内的氨性氮浓度目标值的氨控制目标设定手段;设定前述好氧槽内的溶解氧浓度的下限值的溶解氧浓度下限设定手段;以及曝气风量调节器,该曝气风量调节器含有为使测得的氨性氮浓度接近设定好的氨性氮浓度目标值而进行曝气风量目标值的运算的氨调节器,以及为使测得的溶解氧浓度接近运算所得的溶解氧浓度目标值,运算曝气风量目标值,并且在由氨调节器运算出的溶解氧浓度目标值在设定好的溶解氧浓度下限值以下时,以溶解氧浓度的下限值作为溶解氧浓度目标值,运算曝气风量目标值的溶解氧调节器的曝气风量调节器。

  12、根据权利要求11所述的污水处理场的曝气风量控制装置,其特征在于,将前述氨计设置在以前述好氧槽中的水流方向看,从终端向上游回溯约20~40%的位置,并且将氨性氮浓度的控制目标值设定为约1mg/L~3mg/L。

  13、根据权利要求11所述的污水处理场的曝气风量控制装置,其特征在于,具有测量前述生物反应槽的流入水量的流入流量计、和测量流入水的总氮浓度的流入总氮计;前述氨调节器也采纳分别测得的流入水量和总氮浓度运算曝气风量目标值。

  14、根据权利要求11所述的污水处理场的曝气风量控制装置,其特征在于,具有对前述流入总氮计的异常作出判断的异常判断部;判定为异常时,前述氨调节器只采纳前述流入流量计的测量值信息,运算曝气风量目标值。

  15、根据权利要求11所述的污水处理场的曝气风量控制装置,其特征在于,除了前述流入总氮计仪器自身的异常和传输异常等硬件故障之外,前述异常判断部还以测量值的时间序列数据的偏差超过规定的阈值作为异常判断基准。

  说明书

  污水处理场的曝气风量控制装置

  技术领域

  本发明涉及利用具有好氧槽的生物反应槽进行水处理的污水处理场的曝气风量控制装置。

  背景技术

  以往的污水处理场中利用被称为活性污泥法的工艺方法主要是除去有机物。但是近年来,由于在湖沼、河湾等封闭性水域富营养化加剧,因此对污水深度处理的需求增高,即不仅要除去有机物,还要除去造成富营养化的物质氮、磷。

  图9为应用本发明的污水处理场的一个系列的处理系统图。在该图中,由总输水管送入的污水经流入泵1被压送至一个系列。系列内的污水流入最初沉淀处2,其流出侧通过输水管51与厌氧槽10的流入侧相连。在该厌气槽10依次连接有无氧槽11和好氧槽12,而且好氧槽12的流出侧通过输水管52与最终沉淀池13的流入侧相连,在该最终沉淀处13的流出侧连接有排出处理水的输水管60。

  此外,在好氧槽12的循环水管出口连接有输水管53,通过该输水管53循环泵14向无氧槽11供给循环水。在最终沉淀处13连接有输水管54及输水管55,其中,通过输水管54回流泵15将最终沉淀处13中的处理水的一部分返送至厌氧槽10,通过输水管55剩余污泥泵排出污泥。在最初沉淀处2还连接有初沉淀抽出泵18,由该初沉淀抽出泵18将沉淀于最初沉淀处2的污泥通过输水管58,和来自剩余污泥泵17的污泥一起排出。在该系列内的好氧槽12设置曝气装置9。

  图9所示的污水处理工艺是典型的同时除去有机物、氮和磷的工艺,被称为厌氧-无氧-好氧工艺或A20(Anaerobic Anoxic Oxic)工艺。以下,简要说明该工艺方法除去氮、磷的机理。

  (a)除氮

  在好氧槽12,利用由曝气装置9供给的氧,硝化菌将氨性氮(NH4-N)氧化成亚硝酸性氮(NO2-N)、硝酸性氮(NO3-N)。在无氧条件下,利用将流入污水中的有机物作为营养源的脱氮细菌的硝酸性呼吸或亚硝酸性呼吸,将由循环泵14送入无氧槽11的亚硝酸性氮(NO2-N)、硝酸性氮(NO3-N)还原为氮气(N2),并将氮气排出到系统外。

  如果用化学方程式表示除氮反应则如下所示,

  硝化反应为:

  NH4++2O2→NO2-+2H2O …(1)

  NO2-+1/2O2→NO3- …(2)

  脱氮反应如果以使用甲醇作为有机物时的反应来表示则为:

  6NO3-+5CH3OH→3N2+5CO2+7H2O+6OH- …(3)

  (b)除磷

  在配置于曝气槽的前段的厌气槽10内,活性污泥中的贮磷菌将醋酸等有机酸蓄积在体内,放出磷酸(PO4)。对该过量释放的磷酸态的磷在配置于曝气槽的后段的好氧槽12中,利用贮磷菌的磷过量摄取作用,使厌氧槽10放出的以上的磷酸态的磷由活性污泥吸收,从而除去磷。

  即,要使该反应进行,需要有醋酸等有机酸。在雨水流入时有机酸浓度变小,贮磷菌可利用的有机物减少,因此磷的排出反应不能够充分进行,有时还会进一步使磷的过量摄取反应也不充分,从而造成有时仅仅通过生物学上的除磷不能够获得所需水质的情况。

  因此,为了弥补这一不足,还有以下所述的方法,即配备贮存聚氯化铝、硫酸铝、硫酸铁等絮凝剂的絮凝剂贮存槽,通过注入这些絮凝剂,使磷成分以磷酸铝或磷酸铁的形式沉淀,除去磷。该反应式如下所示。

  Al3++3PO4-→Al(PO4)3 …(4)

  在污水处理场中,工作时必须通过优化运行各系列的回流泵、循环泵、剩余污泥抽出泵、曝气装置,将回流流量、循环流量、剩余污泥抽出量、曝气风量控制在合理的数值,使氮、磷和有机物不超过各自的放出水质的规定值。其中,曝气装置9是供给微生物除去氮、磷和有机物时所需的溶解氧的装置,占污水处理场的运行成本的40~60%。

  该曝气装置9的溶解氧的供给量如果过少,则水质恶化。而如果溶解氧的供给量过多则运行成本高。即通过将该曝气装置9控制在一个合理的运行状态,能够保持水质和削减运行成本。

  另一方面,在引入了深度处理的污水处理场中,多要求完全硝化,如尽可能使放出水的氨性氮浓度(以下,简称为氨浓度)为零。这是因为,要使如(1)式~(3)式所示的脱氮反应充分进行,必须先在好氧槽使氨尽可能地转变为硝酸,以及作为污水处理场的规定值之一BOD(生化需氧量)的要求,如果残存有氨则BOD增高。

  图10为将这种以往的污水处理场的曝气风量控制装置的结构和图9所示的污水处理系统一并显示的框线图。它呈如下的结构,由构成曝气风量调节器201的D0调节器30控制曝气装置9,使设置于污水处理系列的好氧槽12的溶解氧浓度计25的测量值达到由设定装置101设定的溶解氧浓度(以下溶解氧也称为DO)控制目标值31(参考日本特開平11-244894号公报)。

  图11为将这种以往的另一种污水处理场的曝气风量控制装置的结构和图9所示的污水处理系统一并显示的框线图。它呈如下的结构,由构成曝气风量调节器202的氨调节器40控制曝气装置9,使设置于污水处理系列的好氧槽12的氨计26的测量值达到由设定装置102设定的氨控制目标值41(参考日本特開2003-136086号公报)。

  发明内容

  图10所示的曝气风量控制装置利用与图11所示的氨计26相比更价廉且更易于保养管理的溶解氧浓度计25,初期成本低,易保养管理。但同时也存在如下的问题,即由于是根据溶解氧这一间接的指标控制曝气量,因此要一直保持放出水质就必须在较高的溶解氧目标值下运行,从而使曝气所需的运行成本增大。

  而图11所示的曝气风量控制装置与图10所示的溶解氧浓度计25相比,初期成本高,传感器的保养管理麻烦。但另一方面,它又具有如下的优点,它是通常基于与有机物的除去、磷的吸收速度相比,硝化菌的硝化速度慢,如果供给硝化所需的氧,就能够确保除去有机物、磷和氮所必需的风量的观点,将氨浓度作为指标,进行曝气风量控制的装置,因此能够实现在保持放出水质的基础上,削减曝气所需的运行成本的运行。

  但是,例如雨天时流入水的总氮浓度显著降低,降低到10mg/L以下时,硝化所需的曝气风量必然减少,因此图11所示的装置中仅以好氧槽12的氨作为指标进行控制,在好氧槽12的末端部的溶解氧浓度有时会降低到1mg/L的程度,其后在流入水质的浓度上升时使处理恶化。

  此外,从监视水质的观点出发,图11所示的装置中的氨计26多设置在好氧槽12的出口附近。在好氧槽12的出口部分,必须使氨的控制目标值为接近于零的值,但存在氨计26的测定精度在低浓度时不太好的问题,而且还存在如下的问题,即氨浓度和曝气风量的关系呈非线性关系,浓度越低,要除去每单位量氨所需的风量就越多,因此曝气风量对传感器误差的灵敏度大,变得难以控制。

  实际上,好氧槽12内的氨越是进入到后段,处理就越深入,因此从入口到出口具有浓度分布。本来在靠近放出水的好氧槽的出口附近设置氨计是较为理想的,但由于受到上述问题的影响存在控制性能不佳的问题。

  本发明就是为了解决上述问题点而完成的,其目的是提供能够在一直保持良好的水质的同时,削减曝气风量的污水处理场的曝气风量控制装置。

  本申请的第1项发明的特征是:在具备在利用具有好氧槽的生物反应槽进行水处理时,根据曝气风量目标值向好氧槽供给空气的曝气装置的污水处理场的曝气风量控制装置中,具有测量好氧槽内的氨性氮浓度的氨计;设定好氧槽内的放出水的氨性氮浓度目标值的氨控制目标设定手段;为使测得的氨性氮浓度接近设定好的氨性氮浓度目标值,运算曝气风量目标值的氨调节器;将氨计设置在相对好氧槽的总长度,从出口部分向上游方向回溯约20~40%的位置,并且将氨性氮浓度的控制目标值设定为约1mg/L~3mg/L。

  本申请的第2项发明的特征是:在具备在利用具有好氧槽的生物反应槽进行水处理时,根据曝气风量目标值向前述好氧槽供给空气的曝气装置的污水处理场的曝气风量控制装置中,具有测量前述好氧槽内的氨性氮浓度的氨计;测定前述好氧槽内的溶解氧浓度的溶解氧浓度计;设定前述好氧槽内的氨性氮浓度目标值的氨控制目标设定手段;设定前述好氧槽内的溶解氧浓度的下限值的溶解氧浓度下限设定手段;以及曝气风量调节器,该曝气风量调节器含有为使测得的氨性氮浓度接近设定好的氨性氮浓度目标值而进行曝气风量目标值的运算的氨调节器,以及在测得的溶解氧浓度在设定好的溶解氧浓度的下限值以下时,修正前述曝气风量目标值的溶解氧下限调节器。

  本发明的第3项发明特征是:在具备在利用具有好氧槽的生物反应槽进行水处理时,根据曝气风量目标值向前述好氧槽供给空气的曝气装置的污水处理场的曝气风量控制装置中,具有测量前述好氧槽内的氨性氮浓度的氨计;测量前述好氧槽内的溶解氧浓度的溶解氧浓度计;设定前述好氧槽内的氨性氮浓度目标值的氨控制目标设定手段;设定前述好氧槽内的溶解氧浓度的下限值的溶解氧浓度下限设定手段;以及曝气风量调节器,该曝气风量调节器含有为使测得的氨性氮浓度接近设定好的氨性氮浓度目标值而进行曝气风量目标值的运算的氨调节器,以及为使测得的溶解氧浓度接近运算所得的溶解氧浓度目标值,运算曝气风量目标值,并且在由氨调节器运算出的溶解氧浓度目标值在设定好的溶解氧浓度下限值以下时,以溶解氧浓度的下限值作为溶解氧浓度目标值,运算曝气风量目标值的溶解氧调节器的曝气风量调节器。

  本发明通过采用如上所述的构成,能提供能够在一直保持良好的水质的同时,削减曝气风量的污水处理场的曝气风量控制装置。

相关推荐
项目深度追踪
数据独家提供
服务开通便捷 >