申请日2018.01.17
公开(公告)日2018.08.31
IPC分类号G01N27/00
摘要
本实用新型公开了一种淤、污泥土真空‑电渗联合试验测试装置,包括真空泵、五通阀、电渗作用模型筒、真空作用模型筒、真空+持续通电电渗作用模型筒、真空+间歇通电电渗作用模型筒,本实用新型可以通过1次实施就可获得多个不同实验条件下的淤/污泥土真空‑电渗联合试验,可以通过实验结果获得在真空电渗联合作用下的电渗最佳作用时机。同时还可对不同含水率的测试对象、不同颗粒级配的测试对象、不同的通电方式、不同排水阴极/排水阳极极的材料、排水阴极和排水阳极极之间不同电压等实验条件进行测量。
权利要求书
1.一种淤、污泥土真空-电渗联合试验测试装置,包括真空泵(300),其特征在于,还包括电渗作用模型筒(100a)、真空作用模型筒(100b)、真空+持续通电电渗作用模型筒(100c)、真空+间歇通电电渗作用模型筒(100d),电渗作用模型筒(100a)、真空作用模型筒(100b)、真空+持续通电电渗作用模型筒(100c)、真空+间歇通电电渗作用模型筒(100d)均包含有机玻璃筒(101)、排水阴极(102)、底部槽(104)、支架(107)、底板(108)、PVC导流管(109)、排水阳极(110)和活塞板(111),
有机玻璃筒(101)通过支架(107)设置在底板(108)上,有机玻璃筒(101)内设置有活塞板(111),
排水阴极(102)和排水阳极(110)均为中空圆柱体电极,排水阴极(102)和排水阳极(110)均沿长度方向每间距设定距离在周向均匀设置若干个圆孔,排水阴极(102)和排水阳极(110)外部均绑扎涤纶透水滤布,
有机玻璃筒(101)的底面设置有若干个底部槽(104),底部槽(104)的槽顶盖设有带孔PVC顶盖(104a),带孔PVC顶盖(104a)上覆盖涤纶透水滤布,有机玻璃筒(101)的底面中心设置有中心汇水凹槽,中心汇水凹槽的槽底开设有槽底出水口,各个底部槽(104)均与中心汇水凹槽连通,排水阴极(102)沿有机玻璃筒(101)的内壁周向分布,排水阳极(110)设置在有机玻璃筒(101)的中心轴处,排水阴极(102)的底端与底部槽(104)连通,排水阳极(110)的底端与中心汇水凹槽连通,
PVC导流管(109)顶部与槽底出水口连通,
电渗作用模型筒(100a)的PVC导流管依次通过第一气水分离器(200a)、第一通断控制阀门与五通阀(302)连接;
真空作用模型筒(100b)的PVC导流管依次通过第二气水分离器(200b)、第二通断控制阀门与五通阀(302)连接;
真空+持续通电电渗作用模型筒(100c)的PVC导流管依次通过第三气水分离器(200c)、第三通断控制阀门与五通阀(302)连接;
真空+间歇通电电渗作用模型筒(100d)的PVC导流管依次通过第四气水分离器(200d)、第四通断控制阀门与五通阀(302)连接;
五通阀(302)与真空泵(300)连接。
2.根据权利要求1所述的一种淤、污泥土真空-电渗联合试验测试装置,其特征在于,排水阴极(102)连接阴极导线(105a),阴极导线(105a)依次经底部槽(104)、中心汇水凹槽、槽底出水口、PVC导流管(109)引出;
排水阳极(110)连接阳极导线(105b),阳极导线(105b)依次经底部槽(104)、中心汇水凹槽、槽底出水口、PVC导流管(109)引出,
阴极导线(105a)和阳极导线(105b)分别与整流器(106)的正负两端连接。
3.根据权利要求1所述的一种淤、污泥土真空-电渗联合试验测试装置,其特征在于,所述的第一气水分离器(200a)~第四气水分离器(200d)均包含气水分离腔(201)、气水分离腔支架(203)和电子称(202),气水分离腔(201)通过气水分离腔支架(203)设置在电子称(202)上,气水分离腔(201)的底部为透明的带刻度的集水腔(201a),气水分离腔(201)的顶部设置有分离器进口(205)和分离器出口(204)。
4.根据权利要求1所述的一种淤、污泥土真空-电渗联合试验测试装置,其特征在于,所述的活塞板(111)边缘开有凹槽,凹槽里面嵌入橡胶垫圈(112);有机玻璃筒(101)顶部有盖板(114),盖板(114)用紧固螺栓(113)与有机玻璃筒(101)顶部固定。
5.根据权利要求1所述的一种淤、污泥土真空-电渗联合试验测试装置,其特征在于,所述的排水阴极(102)和排水阳极(110)平行设置且顶部高度相同。
说明书
一种淤、污泥土真空-电渗联合试验测试装置
技术领域
本实用新型涉及岩土工程、环境科学和工程领域,具体涉及一种淤、污泥土真空-电渗联合试验测试装置。适用但不限于测试各种类型的软弱土、淤泥土、污染土在电渗和真空联合作用时电渗最佳介入时机的判断。
背景技术
近年来,一方面国内各大江、河、湖泊淤积严重,急需清淤,另一方面由吹填的超软淤泥土形成的土地迫切地需要加以开发利用,以缓解土地供应或交通压力日益增长的矛盾。疏浚的湖相吹填土具有高含水率、高孔隙比、低渗透性、高黏粒含量、高压缩性和超低强度及承载力的特征等特点,且在自重下固结需很长时间,此类超软弱地基的处理已经成为工程建设中重要的一环,其核心技术难题是如何快速、高效、经济地进行处理加固。
对于此类吹填淤泥场地地基,由于工程条件,砂源等因素的限制,制约了传统真空预压法的应用,取而代之的是无砂垫层的真空预压处理方法。该法取消了常规真空预压法中的水平排水砂垫层,将软基中的垂直塑料排水板与真空抽气管直接连接,起到节省砂料、降低费用、缩短加固工期的作用。但此技术处理的土体强度增长有限,地基有效加固深度小,地基承载力仍然较低,其主要原因包括黏粒含量过高导致竖向排水板严重淤堵、排水系统内真空度局部损失大、竖向排水体弯曲程度大等。上述原因均降低了排水系统的排水效率,导致无砂垫层真空预压法加固软土地基呈现出前期效果明显、后期疲软的现象,因此仍需提高改进。
20世纪30年代Casagrande将电渗技术应用于软土加固中,用以提高土体的抗剪强度与稳定性。主要是利用电渗对于对细颗粒含量大、低水力渗透系数的软黏土,只需较小的电势梯度就能产生相对较大的孔隙水渗流的特点。将电渗技术引入到软土的快速排水固结成为可行的思路。但是,在单纯电渗作用下,阳极附近会因为含水率降低土体收缩产生诸多微裂缝,导致界面电阻急剧变大,电能消耗严重。一般认为真空预压-电渗联合作用下,真空荷载对土体的作用力近似为球应力,对土体向中间挤压,因此有利于减少微裂缝。电渗-真空预压复合法在处理软土地基时有着明显的优势。
真空预压法及电渗法具有较强互补性,两者结合可以达到提高土体处理效果、改善土体处理均匀性的目标。但这些研究并没有考虑电渗-真空预压复合时电渗最佳介入时间点问题,可以肯定的是,电渗并非越早介入越好,而过晚介入又达不到更高效排水固结的目的,因此非常有必要开发出一种淤、污泥土真空-电渗联合试验测试装置。
实用新型内容
本实用新型的目的在于针对现有技术存在的上述问题,提供一种淤、污泥土真空-电渗联合试验测试装置,可以进行真空压力场-电场耦合实验。
一种淤、污泥土真空-电渗联合试验测试装置,包括真空泵,还包括电渗作用模型筒、真空作用模型筒、真空+持续通电电渗作用模型筒、真空+间歇通电电渗作用模型筒,电渗作用模型筒、真空作用模型筒、真空+持续通电电渗作用模型筒、真空+间歇通电电渗作用模型筒均包含有机玻璃筒、排水阴极、底部槽、支架、底板、PVC导流管、排水阳极和活塞板,
有机玻璃筒通过支架设置在底板上,有机玻璃筒内设置有活塞板,
排水阴极和排水阳极均为中空圆柱体电极,排水阴极和排水阳极均沿长度方向每间距设定距离在周向均匀设置若干个圆孔,排水阴极和排水阳极外部均绑扎涤纶透水滤布,
有机玻璃筒的底面设置有若干个底部槽,底部槽的槽顶盖设有带孔PVC顶盖,带孔PVC顶盖上覆盖涤纶透水滤布,有机玻璃筒的底面中心设置有中心汇水凹槽,中心汇水凹槽的槽底开设有槽底出水口,各个底部槽均与中心汇水凹槽连通,排水阴极沿有机玻璃筒的内壁周向分布,排水阳极设置在有机玻璃筒的中心轴处,排水阴极的底端与底部槽连通,排水阳极的底端与中心汇水凹槽连通,
PVC导流管顶部与槽底出水口连通,
电渗作用模型筒的PVC导流管依次通过第一气水分离器、第一通断控制阀门与五通阀连接;
真空作用模型筒的PVC导流管依次通过第二气水分离器、第二通断控制阀门与五通阀连接;
真空+持续通电电渗作用模型筒的PVC导流管依次通过第三气水分离器、第三通断控制阀门与五通阀连接;
真空+间歇通电电渗作用模型筒的PVC导流管依次通过第四气水分离器、第四通断控制阀门与五通阀连接;
五通阀与真空泵连接。
排水阴极连接阴极导线,阴极导线依次经底部槽、中心汇水凹槽、槽底出水口、PVC导流管引出;
排水阳极连接阳极导线,阳极导线依次经底部槽、中心汇水凹槽、槽底出水口、PVC导流管引出,
阴极导线和阳极导线分别与整流器的正负两端连接。
第一气水分离器~第四气水分离器均包含气水分离腔、气水分离腔支架和电子称,气水分离腔通过气水分离腔支架设置在电子秤上,气水分离腔的底部为透明的带刻度的集水腔,气水分离腔的顶部设置有分离器进口和分离器出口。
活塞板边缘开有凹槽,凹槽里面嵌入橡胶垫圈;有机玻璃筒顶部有盖板,盖板用紧固螺栓与有机玻璃筒顶部固定。
排水阴极和排水阳极平行设置且顶部高度相同。
电渗作用模型筒中的排水阳极和排水阴极之间的电压初始值设定为电压设定值并保持电压不变,关闭第一通断控制阀,使得真空泵断开与第一气水分离器的连通;
将真空作用模型筒中的排水阳极和排水阴极之间的电压初始值设定为0V并保持电压不变,打开第二通断控制阀,使得真空泵与第二气水分离器连通;
真空+持续通电电渗作用模型筒中的排水阳极和排水阴极之间的电压初始值设定为电压设定值并保持电压不变,打开第三通断控制阀,使得真空泵与第三气水分离器连通;
真空+间歇通电电渗作用模型筒中的排水阳极和排水阴极之间的电压为周期性通电电压,打开第四通断控制阀,使得真空泵与第四气水分离器连通。
本实用新型相对于现有技术,具有以下有益效果:可以通过1次实施就可获得多个不同实验条件下的淤、污泥土真空-电渗联合试验,可以通过实验结果获得在真空电渗联合作用下的电渗最佳作用时机。同时还可对不同含水率的测试对象、不同颗粒级配的测试对象、不同的通电方式、不同排水阴极/排水阳极极的材料、排水阴极和排水阳极极之间不同电压等实验条件进行测量。